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Background/outline

• Topic: Convergence rates of splitting algorithms

• Convergence rates of these algorithms were unknown for many years.

• Today: I’ll present a simple procedure for convergence rate analysis that
generalizes to a wide class of algorithms.

• Outline:
• Algorithms
• Our Question
• Challenges/Techniques
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What is a splitting?

• We want to:
minimize

x∈H
f (x) + g(x).

• H is a Hilbert space, may be infinite dimensional.
• f and g are closed, proper, and convex (not necessarily differentiable).
• Focus of all algorithms today
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Basic operations in splitting algorithms

• The proximal operator: For all x ∈ H and γ > 0

proxγh(x) : = arg min
y∈H

h(y) + 1
2γ ‖y − x‖2

= x− γ∇̃h(proxγh(x))←− implicit subgradient.

• For all z ∈ H, the vector ∇̃h(z) ∈ ∂h(z) is a subgradient.
• prox = Main subproblem in splitting algorithms.
• Many functions in machine learning and signal processing have simple or

closed form proximal operators (e.g., `1 and matrix norms, indicator
functions, quadratic functions,...).
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Major first order algorithms: subgradient form

implicit semi-implicit explicit

• (Sub)gradient method:

zk+1 − zk = −γ∇̃(f + g)(zk).

• Proximal point algorithm (PPA):

zk+1 − zk = −γ∇̃(f + g)(zk+1).

• Forward backward splitting (FBS):

zk+1 − zk = −γ∇̃f (zk+1)− γ∇̃g(zk).

• Douglas Rachford splitting (DRS):

zk+1 − zk = −γ∇̃f (xk
f )− γ∇̃g(xk

g ).

• =⇒ ‖zk+1 − zk‖ controls size of subgradients!
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Major first order algorithms: diagram form

SM: z z+
−γ∇̃(f + g)(z)

z z+
−γ∇̃(f + g)(z+)

FBS:

z z+

−γ∇̃g(z) −γ∇̃f (z+)

PPA:
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Diagram of DRS

z z+

xg = proxγg(z)

z ′ = reflγg(z)

xf = proxγf (z ′)

−γ∇̃g(xg)

−γ∇̃g(xg) −γ∇̃f (xf )

−γ∇̃f (xf )

xf − xg

z+ = 1
2 z + 1

2reflγf ◦ reflγg(z), where refl := 2prox− I

xf − xg = z+ − z = −γ(∇̃f (xf ) + ∇̃g(xg)).
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Our main question

How fast and how slow are splitting algorithms?

• For simplicity, let’s consider objective error and the unconstrained problem

minimize
x∈H

f (x) + g(x).

• Let x∗ ∈ H be a minimizer of f + g.
• Our goal is to measure

f (xk) + g(xk)− f (x∗)− g(x∗)

for certain natural sequences (xj)j≥0.
• Note: This talk is not comprehensive.

• The paper analyzes other algorithms and convergence measures.
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Results: spectrum of objective error convergence rates
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Averaging

• The rates are sharp. (new result)
• Counterintuitive result: DRS is nearly as slow as subgradient method...
• ...but averaging: (x j)j≥0 7→ ( 1

j+1
∑j

i=0 x i)j≥0
• Smooths objective value sequence.
• Nearly as fast as PPA.

• For DRS, the smooth results only require f OR g to be smooth, not both.
(FBS needs g smooth and SM needs f + g smooth.)
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Should we always average?
• Convergence rates improve when we average.

o(1/
√

k + 1)→ O(1/(k + 1)).
• Should we always average?

• No. Can ruin sparsity patterns in the solution/prolong convergence
• Consider DRS applied to basis pursuit problem

minimize
x∈Rd

‖x‖1

subject to: Ax = b

100 101 102 103 104

Iteration k

101

102

103

S
p
a
rs

it
y

nonergodic
ergodic

9 / 14



Challenges of convergence analysis
• In splitting algorithms, implicit/explicit subgradients are generated at two

different points
• Should make Lipschitz continuity assumption.

• Example: C ⊆ H, f = χC (0 in C , ∞ outside), g = ‖ · ‖2, only natural point
to evaluate is in C .

• The objective does not decrease monotonically
• =⇒ The classical approaches to obtain convergence rates fail!

100 101 102 103

Iteration k

10-5

10-4

10-3

10-2

10-1

100

101

102

O
b
je

ct
iv

e
 E

rr
o
r

nonergodic
ergodic
37.3516/(k+1)

10 / 14



Other forms of monotonicity

• Other quantities decrease monotonically:
• z∗ be a fixed point of one of the above algorithms.

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − ‖zk+1 − zk‖2

‖zk+1 − zk‖2 ≤ ‖zk − zk−1‖2

• The above inequalities are key to the convergence analysis.
• Implies that ‖zk+1 − zk‖2 is monotonic and summable! (Important)
• true in PPA/FBS/DRS/ADMM/forward-Douglas-Rachford

splitting/Chambolle and Pock’s primal-dual algorithm....

• Recall: ‖zk+1 − zk‖ controls subgradient size
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Our techniques: nonsmooth case

Our results follow from three tools.

• A lemma that estimates convergence rates of sequences
• Roughly: (aj)j≥0 ⊆ R summable and monotonic =⇒ ak = o(1/(k + 1)).

• A theorem that estimates convergence rates of subgradients in splitting
algorithms

• Recall: ‖zk+1 − zk‖2 is monotonic and summable, and so

‖zk+1 − zk‖ = o
( 1
√

k + 1

)
.

• =⇒ In DRS:

‖xk
f − xk

g ‖ = γ‖∇̃f (xk
f ) + ∇̃g(xk

g )‖ = ‖zk+1 − zk‖ = o
( 1
√

k + 1

)
.

• An inequality that bounds objective values by subgradient norms.
• =⇒ nonergodic rate o(1/

√
k + 1).

• Ergodic O(1/(k + 1)) rates follows from this inequality + Jensen’s
inequality.
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Conclusions

• We also analyze ADMM and other splitting algorithms.

• All of the obtained rates are sharp! (new result)

• Applications in the paper: New convergence rates for feasibility,
distributed model fitting, linear programming, semidefinite programming,
and decentralized ADMM problems.

• In a followup paper, we study these algorithms when f and g are regular
(e.g., strongly convex or differentiable).3

• The rates automatically improve without knowledge of Lipschitz constants
or strong convexity modulus.

• e.g., for differentiable f or g o(1/
√

k + 1)→ o(1/(k + 1)).

• We also generalized these techniques to prove convergence rates of wide
class of primal-dual algorithms4.

3http://arxiv.org/abs/1407.5210
4http://arxiv.org/abs/1408.4419
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