Convergence rate analysis of several splitting schemes¹

Damek Davis²

Department of Mathematics University of California, Los Angeles

INFORMS annual meeting 2014

¹Joint work with Prof. Wotao Yin (UCLA) (http://arxiv.org/abs/1406.4834)

²http://www.math.ucla.edu/~damek

Background/outline

- Topic: Convergence rates of splitting algorithms
- Convergence rates of these algorithms were unknown for many years.
- **Today:** I'll present a simple procedure for convergence rate analysis that generalizes to a wide class of algorithms.
- Outline:
 - Algorithms
 - Our Question
 - Challenges/Techniques

What is a splitting?

• We want to:

$$\underset{x \in \mathcal{H}}{\text{minimize }} f(x) + g(x).$$

- $\ensuremath{\mathcal{H}}$ is a Hilbert space, may be infinite dimensional.
- *f* and *g* are closed, proper, and convex (not necessarily differentiable).
- Focus of all algorithms today

Basic operations in splitting algorithms

• The proximal operator: For all $x \in \mathcal{H}$ and $\gamma > 0$

$$\begin{split} \mathbf{prox}_{\gamma h}(\mathbf{x}) &:= \mathop{\arg\min}_{y \in \mathcal{H}} \ h(y) + \frac{1}{2\gamma} \|y - \mathbf{x}\|^2 \\ &= \mathbf{x} - \gamma \widetilde{\nabla} h(\mathbf{prox}_{\gamma h}(\mathbf{x})) \longleftarrow \text{ implicit subgradient.} \end{split}$$

- For all $z \in \mathcal{H}$, the vector $\widetilde{\nabla}h(z) \in \partial h(z)$ is a subgradient.
- prox = Main subproblem in splitting algorithms.
- Many functions in machine learning and signal processing have simple or closed form proximal operators (e.g., l₁ and matrix norms, indicator functions, quadratic functions,...).

Major first order algorithms: subgradient form

implicit

semi-implicit

explicit

• (Sub)gradient method:

$$z^{k+1} - z^k = -\gamma \widetilde{\nabla}(f+g)(z^k).$$

• Proximal point algorithm (PPA):

$$z^{k+1} - z^k = -\gamma \widetilde{\nabla}(f+g)(z^{k+1}).$$

• Forward backward splitting (FBS):

$$z^{k+1} - z^{k} = -\gamma \widetilde{\nabla} f(z^{k+1}) - \gamma \widetilde{\nabla} g(z^{k}).$$

• Douglas Rachford splitting (DRS):

$$z^{k+1} - z^{k} = -\gamma \widetilde{\nabla} f(x_{f}^{k}) - \gamma \widetilde{\nabla} g(x_{g}^{k}).$$

• $\implies ||z^{k+1} - z^k||$ controls size of subgradients!

Major first order algorithms: diagram form

Diagram of DRS

Our main question

How fast and how slow are splitting algorithms?

- For simplicity, let's consider objective error and the unconstrained problem

 $\underset{x \in \mathcal{H}}{\text{minimize }} f(x) + g(x).$

- Let $x^* \in \mathcal{H}$ be a minimizer of f + g.
- Our goal is to measure

$$f(x^k) + g(x^k) - f(x^*) - g(x^*)$$

for certain natural sequences $(x^j)_{j\geq 0}$.

- Note: This talk is not comprehensive.
 - The paper analyzes other algorithms and convergence measures.

Results: spectrum of objective error convergence rates

- The rates are sharp. (new result)
- Counterintuitive result: DRS is nearly as slow as subgradient method...
- ...but averaging: $(x^j)_{j\geq 0} \mapsto (\frac{1}{j+1}\sum_{i=0}^j x^i)_{j\geq 0}$
 - Smooths objective value sequence.
 - Nearly as fast as PPA.
- For DRS, the smooth results only require f OR g to be smooth, not both. (FBS needs g smooth and SM needs f + g smooth.)

Should we always average?

• Convergence rates improve when we average.

$$o(1/\sqrt{k+1}) \to O(1/(k+1)).$$

- Should we always average?
 - No. Can ruin sparsity patterns in the solution/prolong convergence

 $\underset{x \in \mathbf{R}^d}{\text{minimize }} \|x\|_1$

- Consider DRS applied to basis pursuit problem

Challenges of convergence analysis

- In splitting algorithms, implicit/explicit subgradients are generated at two different points
 - Should make Lipschitz continuity assumption.
 - Example: $C \subseteq \mathcal{H}, f = \chi_C$ (0 in C, ∞ outside), $g = \|\cdot\|_2$, only natural point to evaluate is in C.
- The objective does not decrease monotonically
 - \implies The classical approaches to obtain convergence rates fail!

Other forms of monotonicity

• Other quantities decrease monotonically:

z* be a fixed point of one of the above algorithms.

$$\begin{aligned} \|z^{k+1} - z^*\|^2 &\leq \|z^k - z^*\|^2 - \|z^{k+1} - z^k\|^2 \\ \|z^{k+1} - z^k\|^2 &\leq \|z^k - z^{k-1}\|^2 \end{aligned}$$

- The above inequalities are key to the convergence analysis.
- Implies that $||z^{k+1} z^k||^2$ is monotonic and summable! (Important)
- true in PPA/FBS/DRS/ADMM/forward-Douglas-Rachford splitting/Chambolle and Pock's primal-dual algorithm....
- Recall: $\|z^{k+1} z^k\|$ controls subgradient size

Our techniques: nonsmooth case

Our results follow from three tools.

- A lemma that estimates convergence rates of sequences
 - Roughly: $(a_j)_{j\geq 0} \subseteq \mathbf{R}$ summable and monotonic $\implies a_k = o(1/(k+1)).$
- A theorem that estimates convergence rates of subgradients in splitting algorithms
 - Recall: $\|z^{k+1}-z^k\|^2$ is monotonic and summable, and so

$$||z^{k+1} - z^k|| = o\left(\frac{1}{\sqrt{k+1}}\right).$$

 $\bullet \implies \mathsf{In} \; \mathsf{DRS}:$

$$\|x_{f}^{k} - x_{g}^{k}\| = \gamma \|\widetilde{\nabla}f(x_{f}^{k}) + \widetilde{\nabla}g(x_{g}^{k})\| = \|z^{k+1} - z^{k}\| = o\left(\frac{1}{\sqrt{k+1}}\right)$$

- An inequality that bounds objective values by subgradient norms.
 - \implies nonergodic rate $o(1/\sqrt{k+1})$.
 - Ergodic O(1/(k+1)) rates follows from this inequality + Jensen's inequality.

Conclusions

- We also analyze ADMM and other splitting algorithms.
- All of the obtained rates are sharp! (new result)
- Applications in the paper: New convergence rates for feasibility, distributed model fitting, linear programming, semidefinite programming, and decentralized ADMM problems.
- In a followup paper, we study these algorithms when f and g are *regular* (e.g., strongly convex or differentiable).³
 - The rates automatically improve without knowledge of Lipschitz constants or strong convexity modulus.
 - e.g., for differentiable f or $g \ o(1/\sqrt{k+1}) \rightarrow o(1/(k+1))$.
- We also generalized these techniques to prove convergence rates of wide class of primal-dual algorithms⁴.

³http://arxiv.org/abs/1407.5210

⁴http://arxiv.org/abs/1408.4419

References

• Damek Davis, and Wotao Yin.

Convergence rate analysis of several splitting schemes. arXiv:1406.4834 (2014).

• Damek Davis, and Wotao Yin.

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions. arXiv:1407.5210 (2014).

Damek Davis

Convergence rate analysis of primal-dual splitting schemes. arXiv:1408.4419 (2014).

More: http://www.math.ucla.edu/~damek