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Background/outline

Topic: Convergence rates of splitting algorithms

Convergence rates of these algorithms were unknown for many years.

Today: I'll present a simple procedure for convergence rate analysis that
generalizes to a wide class of algorithms.

Outline:
= Algorithms
= Our Question
= Challenges/Techniques



What is a splitting?

We want to:

minimize f(z)+ g(z).
zEH

= 7H is a Hilbert space, may be infinite dimensional.

= f and g are closed, proper, and convex (not necessarily differentiable).

= Focus of all algorithms today



Basic operations in splitting algorithms

= The proximal operator: For all z € H and v > 0

. 1
prox,,,(x) : = argmin h(y) + 5[y - x|’
yeEH Y

— < — 'y%h(proxvh(x)) <— implicit subgradient.

= For all z € #H, the vector %h(z) € Oh(z) is a subgradient.

= prox = Main subproblem in splitting algorithms.

= Many functions in machine learning and signal processing have simple or
closed form proximal operators (e.g., £1 and matrix norms, indicator

functions, quadratic functions,...).



Major first order algorithms: subgradient form

implicit semi-implicit explicit
(Sub)gradient method:
A = V(4 g)(D).
Proximal point algorithm (PPA):
Pt = (g ().
Forward backward splitting (FBS):
M= = V) — V().

Douglas Rachford splitting (DRS):

P = AV f(af) — 4V g(ah).

k+1

= ||z 2¥|| controls size of subgradients!



Major first order algorithms: diagram form

—V(f+9)(2)
SM: 4

V(4 9)(z")
PPA: +




Diagram of DRS

2 =refly4(2)

27 = %z + %reﬂ,yf orefl,4(z), where refl := 2prox — I

g — 2y =27 — 2= —(Vf(z) + Vg(a,)).
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Our main question

How fast and how slow are splitting algorithms?

= For simplicity, let’s consider objective error and the unconstrained problem

minimize f(z) + g(z).
z€H

= Let z* € H be a minimizer of f + g.
= Our goal is to measure
F(&*) + g(a®) = f(2*) — g(z¥)
for certain natural sequences (:vj)jzo.

= Note: This talk is not comprehensive.

= The paper analyzes other algorithms and convergence measures.



Results: spectrum of objective error convergence rates

PPA
SM+smooth
Averaging FBS+smooth
SM DRS DRS DRS-+smooth
FBS ADMM > ADMM  ADMM-strong

o(%) (%) o(2) o(2)

= The rates are sharp. (new result)

= Counterintuitive result: DRS is nearly as slow as subgradient method...

= ...but averaging: (27);>0 — (HLl 0 T)j>0

= Smooths objective value sequence.
= Nearly as fast as PPA.

= For DRS, the smooth results only require f OR g to be smooth, not both.
(FBS needs g smooth and SM needs f + g smooth.)



Should we always average?
= Convergence rates improve when we average.
o(1/Vk+1)— O(1/(k+1)).
= Should we always average?

= No. Can ruin sparsity patterns in the solution/prolong convergence
= Consider DRS applied to basis pursuit problem

minimize ||z||x
zeR?

subject to: Az = b

Sparsity

— nonergodic
ergodic
10!

10° 10 10% 10° 10*
Iteration k& 9/14




Challenges of convergence analysis

= In splitting algorithms, implicit/explicit subgradients are generated at two
different points
= Should make Lipschitz continuity assumption.
= Example: C C H, f = x¢ (0in C, oo outside), g = || - ||2, only natural point
to evaluate is in C.
= The objective does not decrease monotonically
= = The classical approaches to obtain convergence rates fail!
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Other forms of monotonicity

= Other quantities decrease monotonically:
= z* be a fixed point of one of the above algorithms.

e e e e e

||zk+1 _ zk”Q S ||Zk: _ zk—1|l2

= The above inequalities are key to the convergence analysis.

= Implies that ||zFT1 — 2¥||? is monotonic and summable! (Important)

= true in PPA/FBS/DRS/ADMM /forward-Douglas-Rachford
splitting/Chambolle and Pock’s primal-dual algorithm....

= Recall: ||z"T! — 2¥|| controls subgradient size
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Our techniques: nonsmooth case

Our results follow from three tools.

= A lemma that estimates convergence rates of sequences
* Roughly: (g;);>0 € R summable and monotonic = a3 = o(1/(k + 1)).

= A theorem that estimates convergence rates of subgradients in splitting
algorithms

= Recall: ||z¥*1 — 2*||2 is monotonic and summable, and so

1
k41 k
z —Z =0 .

= = InDRS:
= S . . 1
I = 51 = 1195 af) + Fath)l = 1+ = 4 = o (=)

= An inequality that bounds objective values by subgradient norms.

= — nonergodic rate o(1/vk+ 1).
= Ergodic O(1/(k + 1)) rates follows from this inequality + Jensen’s
inequality.



Conclusions

= We also analyze ADMM and other splitting algorithms.

= All of the obtained rates are sharp! (new result)

= Applications in the paper: New convergence rates for feasibility,
distributed model fitting, linear programming, semidefinite programming,
and decentralized ADMM problems.

= In a followup paper, we study these algorithms when f and g are regular
(e.g., strongly convex or differentiable).?

= The rates automatically improve without knowledge of Lipschitz constants
or strong convexity modulus.

= e.g., for differentiable f or g o(1/v/k+1) = o(1/(k+1)).

= We also generalized these techniques to prove convergence rates of wide
class of primal-dual algorithms®.

3http://arxiv.org/::nbs/1407.5210
4http://arxiv.org/abs/14(]8.4419
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