Detailed Research Statement—Damek Davis

1. Introduction. I design and analyze optimization algorithms for machine learning, statistics, and
signal-processing problems. The optimization problems I find most exciting (e.g., those in deep
learning) fall outside the scope of classical theory since they lack conventionally helpful notions of
convexity or smoothness. For such problems, the most promising practical algorithms today are
simple nonconvex optimization heuristics (e.g., SGD), and except for a few exceptional cases, there
is no guarantee they will find global optima. Despite NP-hardness, these simple heuristics often
succeed, and over the last several years, I have studied why and when they do. My work on this
topic has received several awards, including the Alfred P. Sloan Fellowship in Mathematics (2020);
the INFORMS Optimization Society Young Researchers Award (2019); the NSF CAREER Award
(2020); and the STAM Activity Group on Optimization Best Paper Prize (2023).

1.1. Backdrop. In the 2010s, the tech industry was just starting to routinely use simple iterative
methods (e.g., backpropagation) with ad-hoc initializations to train nonsmooth neural networks
formed from compositions of many Rectified Linear Units (ReLUs) o(x) = max{z,0}. Now, we
plug neural nets into every piece of the applied modeling pipeline. In response, the optimization
community has had to rethink our nonconvex toolkit and depart from the prevailing approach
of the past decades: formulating convex relaxations based on semi-definite programming (SDP),
which are extremely powerful but not efficiently solvable in high-dimensions by current methods.
Consequently, we have had to shift our focus back to directly optimizing nonconvex problems
through the dynamics of simple iterative methods—the setting of my recent work.

1.2. The technical challenge. The aughts brought a revolution in our understanding of first-
order methods for convex optimization, culminating in fast algorithms for solving compressive
sensing problems in computational imaging. However, they left many basic algorithmic questions
for problems without smoothness or convexity relatively untouched. For example, do training
algorithms, such as SGD, converge? If so, what do they converge to—saddle points or local minima?
And how quickly do they converge? Are the existing algorithms the best possible, or can we provably
accelerate them? These questions are classical in smooth and convex optimization and rely on, e.g.,
Taylor’s theorem, the stable manifold theorem, and the relatively simple global geometry of convex
functions. For problems that are nonsmooth and nonconvex, these tools break down.

1.3. Contributions. Practical deep learning training is challenging to analyze using classical
tools since the best-performing models appear almost pathological—a massive web of compositions
of nonlinear nonsmooth functions with trainable parameters inserted wherever the practitioner
chooses. But it seems to work, so it is crucial to take it seriously so that we might improve its
efficiency and reliability. And upon closer inspection, these problems are not too pathological—we
build them from just a few simple components, like polynomials, exponentials, logs, max’s, min’s,
and absolute values. They are examples of so-called “tame” functions/optimization problems, a
virtually exhaustive class in applications, which includes all semialgebraic and subanalytic func-
tions |1]. Tameness, in fact, implies beneficial “partial smoothness” properties. For example, every
tame function’s graph is the finite union of “manifolds” that fit together in a “regular” pattern.
This research statement summarizes a thread of my recent work that uncovers/exploits beneficial
partial smoothness properties in order to analyze, design, and accelerate optimization algorithms
for nonconvex and/or nonsmooth problems. While deep learning formulations motivate some of
my work, my wider aim is to discover principles that generalize to broad optimization problems in
machine learning, statistics, and signal processing. I will describe some of my works on this theme,



including:

1. An exponential acceleration of first-order methods for “generic” nonsmooth optimization
problems [2] (Section [3);

2. Convergence of SGD on virtually any neural network [3] (Section [4);

3. The first efficiency guarantees for SGD for nonsmooth nonconvex problems [4, [5] (Section [p));
4. Provable recovery guarantees in nonconvex statistical-estimation problems [6-10] (Section @;
5. A theory of “avoidable saddle-points” in nonsmooth optimization [11-13] (Sections [7| and ;
6. The first “asymptotic normality” result for SGD in nonsmooth optimization [14] (Section [9));

7. An exponential acceleration of root-finding methods for “generic” nonsmooth mappings [15]

(Section [10).

These works are stepping stones toward establishing efficiency, generalization, and provable
recovery guarantees for training/optimization methods in machine learning and signal processing.
More broadly, my vision for optimization theory in the context of modern machine learning and
“AI” is that it should ideally provide guidance on the model (e.g., the architecture of a neural net-
work, interpretability of the parameters), the algorithms (e.g., “good” hyperparameter selection,
“implicit bias” of generated solutions), convergence speed of methods, initialization, nonvacuous
generalization guarantees based on sample size, dataset selection (e.g., removing outliers and mit-
igating adversarial training examples), and how to formulate tractable convex relaxations, among
other topics. Unfortunately, theoretically justified recommendations in modern machine learning
today often apply only in situations that are uncommon in practice. For example, the strongest
guarantees available for globally optimizing the loss function in machine learning apply in ex-
tremely “wide” neural networks—the neural-tangent-kernel (NTK) regime—which are much wider
than those used in practice they apply when the neural network perfectly interpolates the data,
which does not appear to be true in the modern era of large-language models; they suggest us-
ing hyperparameters that perform poorly in practice (e.g., small “stepsizes” and extremely large
“batch sizes”); they often ignore generalization error—the gold standard metric in ML; they assume
“smooth activation” functions, which appear in practice, but rule out commonly used ReLLUs. The
difficulty of providing good recommendations that work at scale is compounded by the secrecy of
top Al companies, whose strong internal algorithms are closely guarded. Besides machine learning,
these issues (and others) affect any field downstream of it, e.g., in physics-based imaging where de-
noising techniques based on neural network “generative priors” have recently emerged as a fruitful
technique; see Section

In my future work, I aim to narrow this gap between optimization theory and practice, not
only due to the joy of mathematical discovery but also because I foresee that scientific and societal
decisions will increasingly be made based on algorithmic output. It is thus crucial to understand how
these algorithms work to ensure that they function as intended and deliver accurate results within
a given timeframe. Efficiency, in particular, will be a serious issue for smaller organizations due
to the hoarding of GPUs by large companies, regulatory proposal made by the same companies

In this regime, the optimization problem essentially reduces to least squares.
2Laws have already been proposed in the European Union: https://www.europarl.europa.eu/news/en/
headlines/society/20230601ST093804/eu-ai-act-first-regulation-on-artificial-intelligence.
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https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

to limit/ban training of larger modelsﬁ and the need for constantly retrained, real-time, up-to-
date models used in production. Beyond that, without a theoretical framework that explains
the generalization, robustness, and “safety” of such methods, I am fearful that (i) regulatory
measures will succeed and the resources to use “Al techniques” will only be in the hands of a
few large corporations, which do not necessarily have our best interests in mind; and (ii) that these
technologies will not be “safely deployed,” for example, in the transportation, legal, and defense
industries, among others.

In the rest of this statement, I describe the selected research contributions mentioned above
in detail. Besides these contributions to optimization theory, I have also enjoyed working with
and plan to continue working with experts in applied domains, such as coherent diffraction imag-
ing [17] (ongoing collaboration with John Miao and Stan Osher at UCLA), air traffic management
(past collaboration with NASA) [18-20], seismic imaging [21], and computer vision [22, 23] (past
collaboration with Stefano Soatto at UCLA).

Three Best Papers

2. Brief Description of Three Best Papers. Of the seven papers/themes above, my three best
works are [2], [4], and [12] appearing above in Items and |5, respectively. Each paper addresses
a different stage of the dynamics of “gradient methods”
in nonsmooth nonconvex problems, as illustrated in Fig-
ure [1, Such methods aim to reach the lowest point in the
figure. Along the way, they may become attracted to and
trapped at any of the four “first-order critical points,”
depicted by the red dots. From top to bottom, the first
and second dots depict “saddle points,” while the third
and fourth depict a “local minimum” and a “global min-
imum,” respectively.

A first question is how many “steps” of such meth-
ods are needed before they nearly reach the height of at

least one of the four red dots. Paper [4] developed the °
now standard approach for estimating the number of such  pjgure 1: Landscape of a “typical” nons-
steps for a broad class of nonsmooth nonconvex problems, mooth optimization problem together with
known as the “weakly convex” class. This class includes “typical” algorithm trajectories.
a variety of problems in statistical estimation, reinforcement, and (adversarial) machine learning
problems. In recognition of the impact of this work, Paper [4] has received both the INFORMS
Optimization Society Young Researchers Award in 2019 and the STAM Activity Group on Opti-
mization Best Paper Prize (2023). See Section |5 for further details.

Given that “gradient methods” approach the “first-order critical points” depicted in Figure
a second question is whether such methods reach the “good” critical points — the local or global
minimum — or whether they are trapped at the saddle points. For “generic” smooth optimization
problems, randomly initialized methods can never be trapped at saddle points |24} [25], a conse-
quence of Sard’s theorem and the stable manifold theorem. Nonsmooth problems are much more
difficult to analyze since these tools break down. Nevertheless, Paper [12] shows that a minimal

3In [16, Section 2.2], Stanford statistician David Donoho presents a compelling summary of how fears of “Al
killing us all”—which are influencing the policy discussion—emerged; throughout the rest of the manuscript, Donoho
presents a compelling counternarrative.



modification of standard gradient methods — simply adding a random perturbation at each step —
allows one to avoid such points. See Section |7|for further details.

Once all saddle points are bypassed, gradient methods enter a region around a local or global
minimizer. For “generic” smooth optimization problems, such regions have favorable structure
that enable standard gradient methods to converge exponentially fast to a solution. Unfortunately,
standard gradient methods can be exponentially slower for nonsmooth problems, even for “well-
behaved” convex problems. Paper [2] developed the first algorithm to break this (local) complexity
barrier, exponentially improving on all prior methods. In short, the algorithm’s (local) “first-order
oracle complexity of gradient methods” on “generic semialgebraic problems” improves the previous
best complexity of O(k~/2) to O(exp(—k'/3)). See Section [3| for further details.

Details of Selected Work

3. An exponential acceleration for nonsmooth optimization. In smooth optimization, gradient
methods converge linearly (i.e., exponentially fast) on functions that grow quadratically away from
minimizers. Quadratic growth in turn is “generic:” if f is sufficiently smooth, almost all linear

perturbations of f have quadratic growth near each local 1
minimizer Quadratic growth is also a “generic” prop- 0100

erty of nonsmooth tame optimization problems [26]. How-
ever, since the pioneering work of Nemirovski and Yudin
in the 1980s, there was thought to be an exponential gap  ** exp(=Ck)
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and nonsmooth problems under this regularity condition
(Figure [2) [27]. The gap already appears on the simple Figure 2: The speed of gradient methods

nonsmooth strongly convex function under quadratic growth.
L2 d
f(x) = max z; + =||z|| for some m < d and all z € R”. (1)
1<i<m 2

Indeed, let z; denote the iterates of the subgradient method, which repeats
Thy1 = Tk — QR where v, € Of (z), (SM)

where {a;} is a control sequence and 0f(z) denotes the subdifferential at a point z € R? in the
sense of convex analysis. Then, if one initializes xg at the origin and employs an “adversarial
first-order oracle,” there is a lower bound: f(z) — inf f > (2m)~! for all k < m; see 28, [29].
Beyond , the lower bound holds for any algorithm whose kth iterate lies within the linear
span of the past £ — 1 subgradients. Thus, one must make more than m first-order oracle calls to f,
i.e., function and subgradient evaluations, before possibly seeing a speedup. However, for & > m
oracle calls, existing first-order methods continue converging slowly even when given knowledge of
the minimal function value inf f, as in the popular Polyak stepsize (PolyakSGM) |30]; see dashed
lines in Figure

4A consequence of Sard’s theorem.
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Figure 3: Comparison of NTDescent with PolyakSGM on . Left: we fix d and vary m; Right: we fit m
and vary d. For both algorithms, f(x}) denotes the best function value after k oracle evaluations.

Recently in , I developed a first-order method called Normal Tangent Descent (NTDescent)
that exponentially(!) surpasses the “speed limit” of gradient methods derived by Nemirovski and
Yudin The method (locally) converges at the rate f(zg) — f* = O(exp(—Ck'/3)) where O}
depends only on f and not the dimension of the decision variable. The guarantee applies to “almost
every problem” in practice: for any tame (e.g., semialgebraic) locally Lipschitz (nonconvex) function
f, almost all tilts f(z) + (v,z) for v € R? meet our assumptions. NTDescent is also parameter-
free, so the practitioner need not set any parameters to achieve the speedup. Figure |3| illustrates
the performance of NTDescent on f from . In both plots, NTDescent improves on PolyakSGM,
measured in terms of oracle calls. The number of oracle calls is a fair basis for comparison since
both PolyakSGM and NTDescent perform a similar amount of computation per oracle call. Figure3b)
also verifies that the performance of NTDescent is dimension independent. 1 found this to be super
surprising!

"orthogonal decomposition”

smooth part nonsmooth part

Figure 4: An illustration of “partial smoothness” and the induced orthogonal decomposition.

NTDescent is a somewhat sophisticated first-order method, so I will not state it here. But the
inspiration for the method can already be gleaned from a certain “partial smoothness” property

SPyTorch code available at https://github.com/COR-0PT/ntd.py.
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that induces an “orthogonal decomposition” of the loss function into smooth and nonsmooth pieces;
see Figure 4, This structure was identified in my past work [12] with precursors in the work of many
others [31-35]. A consequence of [12] roughly states that “generic” tame optimization problems
have finitely many critical points; every local minimizer is contained within a manifold M;EI along
the manifold, the function is smooth and has quadratic growth; in directions normal to the manifold,
the function grows sharply (i.e., linearly); the manifold induces a decomposition of the function into
“orthogonal pieces” consisting of the smooth extension f;; of the function from the manifold and
the residual function fy. A cartoon representation of such a function is f(u,v) = u? + |v]. Once
one knows the decomposition exists, one can attempt to identify the pieces and run appropriate
gradient methods in the U-space and the V-space. For example, consider f(u,v). Gradient descent
on u? with a constant stepsize converges linearly. On the other hand, gradient descent on |v| with a
geometrically decaying stepsize converges linearly. Of course, one has no information about M nor
the decomposition, so this is only a conceptual method. Nevertheless, one can think of NTDescent
as an approximate implementation of this strategy.

4. A baseline training guarantee for all neural networks. NTDescent exponentially improves on
existing first-order methods. However, it is still worthwhile to understand what, if any, guaran-
tees one can provide the most common training algorithms, for example, the so-called stochastic
subgradient method (SGD). SGD is a variant of where only stochastic estimates of v are
available, either due to inherent uncertainty in evaluating f or induced by the practical difficulty
of fully evaluating derivatives of sums of loss functions over large datasets.

In [3], I proved that SGD converges to a first-order stationary point on any locally Lipschitz
tame loss function f. To show this result, we uncovered a “partial smoothness” property of tame
functions: like the gradient vector field for a smooth function, subdifferentiald’] of tame losses are
“conservative” [37], meaning their (Aumann) integral along any arc z: R, — R? coincides with
the difference of function values at the arc’s endpoints:

{f(:v(t))—f(ﬂf(O))}:/o (0f ((s)), &(s))ds

We then use this to show that the continuous-time analog of the algorithm —i(t) € 9f(x(t)) is
well-behaved, opening the door to classical tools from stochastic approximation theory (e.g., the
ODE method). In contrast to prior work, which assumed particular architectures/data sets, this
result endows all modern neural network models with asymptotic training guarantees. However, it
shows limit points are critical asymptotically, and does not provide finite time efficiency guarantees.

5. Efficiency of Stochastic Methods for Convex Composite Problems. Is it possible to es-
tablish nonasymptotic guarantees? In general, efficiency estimates for SGD and other standard
training methods appear out of reach under such weak “nonpathological” assumptions. Instead, in
the works [4, 5], I gave the first nonasymptotic efficiency estimates for a wide class of stochas-
tic methods, which apply to the ubiquitous class of convexr composite losses. Such losses are
the composition of an (outer) nonsmooth convex function h and an (inner) smooth nonlinear
map ¢, and thus encompass, for example, a broad family of signal processing problems with

5In the context of , the manifold is the subspace in which the first m variables take on the same value:
M:{xERd: T1=T2=...Tm}

TA set-valued generalization of the gradient comprised of limiting convex combinations of gradients at nearby
points |36]. In classical circumstances, the subdifferential reduces to more familiar objects. For example, when f is
C'-smooth at x, the subdifferential df(z) consists only of the gradient V f(x), while for convex functions, it reduces
to the subdifferential in the sense of convex analysis.



smooth “measurement” mappings ¢, fit by nonsmooth (e.g., ¢1) penalization h o ¢ of residuals.
More generally, when problem data z follows a fixed unknown distribution P, the proposed
stochastic algorithms attempt to minimize the expected

residual f(z) = E,.plh(c(z,2),2)] as follows: at each =
iteration ¢, draw a sample zp ~ P, replace the loss
h(c(y, z),z) with a local convex model fy,(y,zr), and
choose wgy1 to minimize fu, (y, 2k) + 55 [ly — zx|®. For
example, classical stochastic subgradient methods have

=)
@

Function gap

this form with linear fy, (y, zx), explaining their notori-
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linear functions poorly approximate h(c(z, z), 2). 1o+ 1o 10 10 10
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In these works [4, [5], I prove the first nonasymptotic e
Figure 5: Step-size insensitivity of non-
linear model-based methods (prox-linear,
prox-point). Shown: Function gap after 100

data passes on a phase retrieval problem.

efficiency estimates for both the classical stochastic sub-
gradient method and a broad class of nonlinear model-
based algorithms, for example, those generated by the
proz-linear model fy, (y,2r) = h(c(x) + Ve(z)(y — x)).
As Figure [5|illustrates, nonlinear models empirically depend less on “stepsize tuning” than subgra-
dient methods, but importantly, I prove they share the same efficiency estimates. More broadly,
the work overcame what was thought to be a fundamental barrier to understanding streaming al-
gorithms in nonsmooth nonconvex optimization: the conventional measures of algorithm progress,
namely the objective gap and the norm of the gradient, can be completely meaningless. Indeed, on
the one hand, one cannot expect the objective gap f(x) — inf f to tend to zero, even in a smooth
setting. On the other hand, simple examples, e.g., f(z) = |z|, show that any “gradient” norm can
be strictly bounded below by a fixed constant for all k. My work offers a surprising resolution:
the gradient of an “implicit smoothing” (the Moreau envelope [38]) tends to zero along the iterate
sequence and bounds the distance of the current iterate to a nearby point with “small” subgradient.
Figure [6a] plots the Moreau envelope of a simple loss function, which is defined for v > 0 as

o) =min{ £+ 5y = ol | (MOREAU)

Figure [6b]illustrates the relationship between gradients of f, and f, namely the gradients of f are
subgradients of f at the point argmin Z of (MOREAU|) and the distance to & is ||V fa(x)]|.

T

=f@ =2 1]
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foo(z)

(a) Moreau envelope of f(x) = |22 — 1| (b) Approximate stationarity

Figure 6: An illustration of the Moreau envelope

This work has found broad applicability in stochastic optimization, distributionally robust opti-
mization, statistical learning, reinforcement learning, and so-called minimax optimization problems



arising in games; e.g., [39-57]. In recognition of the impact, it has received both the INFORMS
Optimization Society Young Researchers Award in 2019 and the STAM Activity Group on Opti-
mization Best Paper Prize (2023).

6. Rapid Local Convergence in Statistical Recovery Problems. Generally, one can at most hope
to find first-order stationary points of nonconvex losses, not global minima. However, medium-
scale numerical tests demonstrate simple local search heuristics’ remarkable ability to solve signal
processing and learning problems globally. Figure for example, plots the recovery error of
a randomly initialized run of a subgradient method on a simplified phase retrieval problem, an
imaging modality underlying X-ray crystallography and which permitted the discovery of the double
helix 58, [59]. Given data {2z}, = {(a;,b;)}"™, contained in R? x R, it seeks =, € R? satisfying

(aZT:c*)2 ~ b;, (i =1,...,m) via minimizing the convex composite empirical risk:
1 m
g(x) := — Z; (X z)? — by (PHASE)
1=

In Figure [7, 1 take d ~ 2% and m = 3d ~ 2?° and find the whole experiment completed in 30
seconds on a (moderately slow) desktop computer.

How do we understand this favorable behavior of the
subgradient method? Let us begin by looking at the be-

havior near a solution. There, rapid local dynamics tend 10t |
to arise from good conditioning. Conditioning of a linear
system, for example, governs the speed of iterative solvers.

10-1 4

Xk = XI/IX|

It plays a similarly fundamental role in optimization, man-
ifesting as growth: for all x near argmin g, we have

10|

g(z) —inf g > p - dist®(z, argmin g) for some a, pu > 0,
(GROWTH)

A positive definite Hessian at a minimum, for example, ° & I?;(Jrationk g &

dictates quadratic growth (o = 2) and local linear conver-

gence of simple iterative methods. On the other hand,

10-7 4

Figure 7: Randomly initialized subgra-
dient method on phase retrieval problem.
sharp growth (o = 1, see Figure 8| for illustration) has (Negligible) Confidence intervals omitted.

classically played a central role in subgradient methods,

implying local linear convergence for convex losses. [60-64]. In the context of Section (3| and the
orthogonal decomposition in Figure 4] sharp growth coincides with the case where f;; = 0. Because
of this, one can expect much faster convergence of the form f(xy) — inf f = O(exp(—Cyk)) where
Cy depends only on f.

Indeed, in [6, 65], I showed that rapid local dynamics of subgradient methods on sharp losses
persist for the convex composite class described in Section Powerful consequences in sta-
tistical estimation and learning arise from this result. For illustration, the empirical phase re-
trieval loss is sharp, a fact first known in the statistical recovery literature [66], where
it was interpreted as strong identifiability of the statistical model x,, rather than as a useful
algorithmic device. Recognizing this connection, I showed
in [8] that a (properly initialized) subgradient method re-
covers z, with the (nearly) optimal sample complezity and
the best known computational complexity guarantees to
date. How deep is this connection between “strong identi-
fiability” and good conditioning/rapid dynamics? I have

Figure 8: A sharp loss.



found that, beyond phase retrieval, growth is pervasive

in statistical estimation, for example, in low-rank matrix

recovery where sharp growth takes hold as soon as the number of “measurements” surpasses the
information-theoretically minimal (or near minimal) number needed for recovery, leading to simi-
larly strong sample and computational complexity guarantees |9, [10]. Importantly, through nons-
mooth (e.g., ¢1) penalization techniques, these results open the door to “outlier robust” recovery
guarantees with linearly and even quadratically convergent iterative methods (see Figure @
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Figure 9: Performance of two iterative methods for a nonsmooth “robust” bilinear sensing problem with
outlier corruption [9]. Left: Exact recovery frequencies when varying the percentage of outliers (z-axis) and
the amount of “oversampling” m/(dy + d2) (y-axis). Center/Right: Recovery error of two iterative methods
under 45% corruption by outliers.

7. Avoiding saddles points of nonsmooth function asymptotically. The works discussed thus
far studied the behavior of iterative algorithms in two regimes: rapid local convergence near min-
imizers (Sections (3] and @ and global asymptotic/finite guarantees for convergence to (possibly
nonoptimal) critical points (Sections {4| and . While in theory, iterative methods could converge
to (locally) suboptimal critical points from random initialization, in practice, this is rare, at least
in deep learning and statistical recovery problems (e.g., see Figurewhere the subgradient method
avoids spurious critical points). Thus, a long-standing open problem in nonsmooth optimization is
determining whether and when standard training algorithms’ limit points tend to local minimizers
or saddle points.

For inspiration, I look to the smooth setting, where the seminal papers [24, 25| prove that
simple iterative methods (e.g., gradient descent) for C? optimization avoid all strict saddle points
(critical points that have negative curvature) when randomly initialized. If all saddle points are
strict, such methods converge to local minima. Later works [67-71] showed that several signal
processing and learning problems possessed this strict-saddle property and also had no spurious
local minimizers, implying that simple randomly initialized methods converge to global minima. In
search of a generalization to nonsmooth losses, a tempting conjecture is that negative curvature,
suitably defined, implies avoidance of saddle points. Unfortunately, this fails even for simple C*
functions. For example, Figure @H@J plots a C! function such that with constant probability, its
randomly initialized gradient flow (Figure , as well as its discretization to the gradient method,
converges to the saddle (the origin). Similar negative results persist even for C'*° optimization over
a single affine inequality [72].

In the works [11, [12], I resolved this open problem for two classes of iterative algorithms by
developing a theory of avoidable nonsmooth saddle points called “active strict saddles.” These
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Figure 10: Left: A C' loss and its flow; Right: A nonsmooth loss with an active strict saddle and its flow.

iterative algorithms include both randomly initialized “proximal” methods —fundamental al-
gorithmic primitives in statistical estimation and learning —and randomly perturbed (i.e., noise
injected) stochastic subgradient methods (SGD) [12]. Figure plots the prototypical form of
an active strict saddle point. Figure illustrates that its randomly initialized subgradient flow
avoids the origin with probability 1. From the figure, we see that the subgradient flow of f contrasts
with that of the pathological example in Figure Indeed, while both functions have directions
of negative curvature, the set of origin-attracted initial conditions of the flow of —0f is simply
the z-axis—a measure zero set. This favorable behavior of f arises because its nonsmoothness
manifests in a structured way: its critical point Z (the origin) lies on an “active” smooth manifold
M (the w-axis). The function f then varies smoothly along M (a “partial smoothness” property)
and sharply normal to M meaning:

inf{||v] : v € Df(2), 2 € U\ M} >0, (ACTTVE)

where U is some neighborhood of Z. I call such structured critical points active strict saddles, and
say a loss f: R — RU {+o0} has the active strict saddle property if each of its critical points is
either a local minimizer or an active strict saddle. (Note: infinite values of f implicitly impose
constraints.) Though the property may appear stringent, it is, in a precise sense, typical: for any
tame f satisfying a mild “Clarke regularity” property, I prove the perturbation f,(z) = f(x)— (v, z)
has the active strict saddle property for almost all v € R? .

This active strict saddle property induces an analogous “orthogonal decomposition” decompo-
sition as in Figure [4, The difference is that the smooth function f;; now has a strict saddle at the
critical point rather than a minimizer. In both works , the key idea is to leverage classical
stable manifold type arguments for the loss fi; or the loss f restricted to M. For example, in [11],
I show that proximal methods reach M in finite time, so smooth dynamics take over, and classical
arguments apply. For randomly perturbed subgradient methods, we introduce and verify a property
called (a)—regularityﬁ that roughly states that fy is smooth in tangent directions to the manifold up
to an error term which is linear in the distance to the manifold; we then use this property to show
that the shadow of the iterates of the perturbed subgradient method along the manifold form an
approximate gradient descent sequence for f restricted to the manifold. Classical stable manifold
arguments then imply nonconvergence to a saddle point .

8. Avoiding saddles points of nonsmooth functions in polynomial time. While asymptotic
convergence to local minimizers is desirable, how efficiently do simple iterative algorithms escape
active strict saddles and converge to local minima? Here, a negative result surfaces: even for C?

8 A variant of the Verdier stratification condition @ in tame geometry.
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losses, gradient descent may take exponential time to avoid saddles [76]. Despite failure in general,
however, a second line of work proves randomly perturbed gradient methods on sufficiently smooth
functions avoid saddles in polynomial time |77-79]. Is an adaptation to nonsmooth losses possible,
and with what complexity? In recent work [13], I developed a promising approach, based on an
wnezact gradient method on the Moreau smoothing of f as in . The key insights: for
convex composite losses, f and f, share all critical points. Moreover, in a neighborhood of an
active strict saddle, the Moreau envelope inherits both the smoothness level of f along the active
manifold and its negative curvature. Finally, for weakly convex losses, evaluating V f, inezactly
amounts to minimizing the strongly convex problem in (MORE AU| approximately—a numerically
efficient operation, implementable by many algorithms, even the subgradient method itself.
The main conclusion of [80] is thus that a variety of algorithms for nonsmooth optimization can
escape strict saddle points of the Moreau envelope at a controlled rate.

9. Asymptotic normality in nonsmooth optimization. Polyak and Juditsky [81] famously showed
that the stochastic gradient method for minimizing smooth and strongly convex functions enjoys a
central limit theorem: the error between the running average of the iterates and the minimizer, nor-
malized by the square root of the iteration counter, converges to a normal random vector. Moreover,
the asymptotic covariance matrix is, in a precise sense “optimal” among any estimation procedure.
If an estimate of the covariance is available, e.g., through online methods [82, 83|, asymptotic
normality guarantees then allow one to construct confidence intervals for the iterates of SGD. A
long-standing open question is whether similar guarantees — asymptotic normality and optimality —
exist for nonsmooth optimization and, more generally, for equilibrium problems. In the work [14],
I developed such guarantees under mild conditions that hold both in concrete circumstances (e.g.,
nonlinear programming) and under “generic” linear perturbations of tame functions.
The guarantees of |14] are already interesting for stochastic nonlinear programming:

m:gn flx) = Ep[f(x, 2)] subject to gi(z) <0 fori=1,...,m. (2)

Here, each g; is a smooth function, and the map = — f(x,z2) is smooth for a.e. z ~ P. Sample
average approximation (SAA) and the stochastic proximal-gradient algorithm (SPG) are two stan-

dard strategies for solving . The former draws a batch of samples z1, 29, ..., 2 9P and finds a
solution z to the empirical approximation

min
x

x| =

k
Zf(a:, ) subject to gi(z) <0 fori=1,...,m. (3)
i=1

In contrast, the SPG algorithm is a streaming algorithm. At each step it draws a single sample
zr ~ P in each iteration k and declares the next iterate xx41 to be

Tht1 € Py(xp — ap - Vf(zg, 21)). (4)

Here, Py(-) denotes the nearest-point projection onto X. Online algorithms like SPG are usually
preferable to SAA since each iteration can be inexpensive, whereas SAA solves the full problem .
The asymptotic distribution of the SAA estimator is also well-understood [84-86|. In contrast, there
is no known guarantee for the asymptotic performance of the SPG in nonsmooth and constrained
settings.

In recent work [14], I prove that under mild assumptions, the running average of the SPG
iterates have the same asymptotic distribution as those of SAA. Moreover, both SAA and SPG
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(a) Feasible region and the iterates xy, (b) The deviations k(T — 2*) and the 95% confi-
dence region.
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Figure 11: The stochastic projected gradient method for minimizing Eq[—x1 + (g, )] over the intersection
of two balls centered around (—1,0,0) and (1,0,0) of radius two. Here, g ~ N(0,1). The optimal solution
(0,0,v3) (marked with a star) lies on an “active manifold” M~the circle depicted in black. The top left figure
depicts the iterates generated by a single run of the process initialized at the origin with stepsize nj, = k—3/*
and ezxecuted for 1000 iterations. The figure on the top right depicts the rescaled deviations \/E(:ik — )
taken over 100 runs with k = 10°. The two figures clearly show that the iterates rapidly approach the active
manifold, and asymptotically the deviations \/E(a_:k — a*) are supported only along the tangent space to M
at x*. The two figures on the second row show the histogram and the empirical CDF, respectively, of the
tangent components \/EPTM(W)(:E;C — z*), overlaid with the analogous functions for a Gaussian.

are asymptotically optimal in a locally minimax sense of Hajek, and Le Cam in both
the nonlinear programming problem and a broad family of stochastic equilibrium problems (e.g.,
games). Specifically, I show that under the three standard conditions—linear independence of
active gradients, strict complementarity, and strong second-order sufficiency—the running average
of the SPG iterates T = %Zle x; is asymptotically normal and optimal:

V(@ — ) 2 N (o, HT - Cov(Vf(z*, 2)) - HT) .
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Here, H admits an explicit description as
H = PrV2 L(z*,y*)Pr (5)

where V2_L(z*,y*) is the Hessian of the Lagrangian function, the symbol { denotes the Moore-
Penrose pseudoinverse, and Pr is the projection onto the subspace “tangent space” {Vg;(z*) iLeI
associated to the set of active indices: Z = {i : g;(x*) = 0}. These three conditions ensure again that
the orthogonal decomposition in Figure [4| exists. In this case we have an “active manifold” defined
by the active indices M := {z: g;(x) = 0 (Vi € Z)} and the identification V2, L(x*,y*) = V2 fy(z*).

Figure[11]illustrates the result with the performance of the projected stochastic gradient method
for minimizing a linear function over the intersection of two balls. This performance is surprising
in light of the work of Duchi and Ruan [89], which uncover a striking gap between the estimation
quality of SAA and at least one standard streaming method, called dual averaging |90, 91], for
stochastic nonlinear optimization. Indeed, even for the problem of minimizing the expectation
of a linear function over a ball, the dual averaging method exhibits a suboptimal asymptotic
covariance [89, Section 5.2]EI In contrast, we see that the stochastic projected gradient method is
asymptotically optimal.

10. An exponential acceleration root-finding methods for “generic” nonsmooth equations. In
Section (3| I described my work [2], which develops NTDescent, a (nearly) linearly convergent first-
order method for “generic” tame optimization problems. NTDescent is an exponential improvement
on all existing first-order methods for this problem class. Is it possible to improve further, say, to
(locally) superlinear convergence of the form f(z;) — inf f = O(272%)? In my recent work [15], I
show that this is indeed possible if (i) f is piecewise linear or f,(x) = ||F'(z) —v|| where F'(x) = v is
a “generic” tame equation; (ii) one knows inf f; and (iii) one solves an (often constant sized) linear
system at each iteration. The work also resolves a long-standing open problem for “nonsmooth
Newton methods” [92], namely whether there exists a method that solves such problems when F' has
nonisolated roots and singular “Jacobian” at the root. Finally, the method is (provably) compatible
with (nonsmooth) autodifferentiation and can scale to hundreds of thousands of variables, a difficult
task for classical Newton-type methods, as demonstrated by my PyTorch librarym

Where do nonsmooth equations arise? The work [15| and the associated PyTorch library pro-
vide several examples, including neural network training, low-rank matrix sensing, and optimality
conditions of nonsmooth optimization problems. In each of these examples, I found that the
SuperPolyak method improves on gradient methods for the same problem class in terms of time
and oracle complexity, even for problems with roughly one million variables. Here, I will consider
an interesting though smaller-scale application: imaging with a generative prior.

An emerging computational imaging technique is using a pre-trained neural network G as an
image prior [93H96]. The prior may help denoise the eventually recovered image or permit one to
take fewer measurements/inflict less radiation on biological samples. It is common practice to use
a nonsmooth G, e.g., one with ReLLU activations. Given G and supposing the imaging task has a
“forward model” H that generates “measurements” b = H(z,) of an image z,, the mathematical
goal is to recover z, by solving the nonsmooth equation H(G(x)) = b['T|] Figure [12] illustrates the
performance of the method SuperPolyak on the objective function f(x) = ||H(G(z))—b||, where in
this case, H is a linear mapping and G is a random ReLU network. The plot shows SuperPolyak
outperforms a classical first-order method (PolyakSGM) in terms of time and oracle complexity.

9In contrast, in the particular case that X is polyhedral and convex, the dual averaging method is optimal [89].
9PyTorch code available at: https://github.com/COR-0PT/SuperPolyak.py.
"1 ignore the noise issue to keep the discussion simple.
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have the same cost: a subgradient of the loss ||H(G(x)) —b|| where the latent
code x s k-dimensional.

Figure 12: Solving a compressive sensing problem with SuperPolyak.

How and why does SuperPolyak work? The principle behind superpolyak is similar to that
underlying the classical Newton method for smooth equations, which linearizes the equation F'(x) =
0 and solves the linearization. Two issues with this classical approach are that f is now nonsmooth,
so Taylor expansions are no longer available, and f: R — R is no longer a “mapping” but a
function. Despite the nonexistence of a Taylor expansion, Lipschitz tame functions are known to
satisfy a related “partial smoothness property” called “semismoothness” [98]. The property states
that for any root Z of f, the approximate holds:

flx)+ v,z —z) =o(||z — z|) as x — T and v € Of(x).

Roughly speaking, semismoothness provides an equation that the root of f nearly satisfies, though
there are infinitely many such solutions to the equation. Thus, a natural strategy is to find the
closest root of this equation. This approach gives rise to PolyakSGM illustrated in Figure
Unfortunately, as shown in the plot, PolyakSGM only converges linearly, not superlinearly. To
“repair” the convergence of Newton’s method, the strategy of [2]| is to choose multiple base points
at which to linearize and then solve all linearizations simultaneously. Specifically, the SuperPolyak
method constructs a sequence of iterates z; € R% At the kth iteration, it successively solves a
sequence of least squares problems arising from “linearizing” the function f at certain “bundle
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points” y;: solve

. . j—1
yy i= argmin o — o2 subject to: [(y) + (vssz — yi)] ) = 0 (©)
zeR4
and choose v; € 0f(y;) arbitrarily for ¢ = 1,.... Thus, each time one solves such a collection of

linearizations, one adds the solution of the linearization back into the bundle and re-solves the
system. While this process could go indefinitely, I prove that (locally) that after at most d steps,
we find a point that superlinearly improves on xj:

Tpt+1 € argmin f(y) satisfies f(zp1) = o(f(z)) ask — oo.
ye{viti<d

Moreover, we often find a bundle point y; that superlinearly improves on z; when i < d, so we need
only solve a constant-sized linear system! In addition, although the naive linear algebra cost of
finding y1, . . . yq is O(d*), I show that one can incrementally build up this bundle O(d?) arithmetic
operations.
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