

Lecture 2: Linear Regression: Direct Methods

Professor Damek Davis

1 / 56

STAT 4830: Numerical optimization for
data science and ML

1. Introduction & Prediction with Features
2. Computing Predictions Efficiently
3. Finding Optimal Weights
4. Direct Solution Methods
5. Numerical Stability
6. QR Factorization

2 / 56

Overview

Last lecture: PyTorch's efficient handling of vectors and matrices

Today: Applying these tools to prediction - a core data science challenge

Four key steps:

1. Converting predictions into matrix operations
2. Formulating the optimization problem
3. Converting optimization into linear equations
4. Solving equations efficiently via direct methods

3 / 56

Introduction

Basic house price equation:

price = w ​ ⋅1 size + w ​ ⋅2 age + w ​ ⋅3 bedrooms + w ​ ⋅4 location + noise

Vector notation:

y = w x +T ϵ

Each weight has clear meaning:

: dollars per square foot

: price change per year of age

: value per bedroom

: location premium

w ​1

w ​2

w ​3

w ​4
4 / 56

Prediction with Multiple Features

Linear relationships sometimes exist in real data
Scatter represents noise/unexplained factors
Simple but powerful approximation

5 / 56

Feature Mapping and Error Analysis

house = {
 'size': 1500, # x₁: sq ft
 'age': 10, # x₂: years
 'bedrooms': 3, # x₃: count
 'location': 0.8 # x₄: some score
}
price = 500000 # y: dollars

def predict_price(house, weights):
 """Predict house price using linear combination of features"""
 return (
 weights[0] * house['size'] + # dollars per sq ft
 weights[1] * house['age'] + # price change per year
 weights[2] * house['bedrooms'] + # value per bedroom
 weights[3] * house['location'] # location premium
)

6 / 56

Code Example: House Price Prediction

Matrix multiplication for all predictions:

house ​ :1 [1500, 10, 3, 0.8] ⋅ [w ​,w ​,w ​,w ​] =1 2 3 4 prediction ​1

house ​ :2 [2100, 2, 4, 0.9] ⋅ [w ​,w ​,w ​,w ​] =1 2 3 4 prediction ​2

house ​ :3 [800, 50, 2, 0.3] ⋅ [w ​,w ​,w ​,w ​] =1 2 3 4 prediction ​3

Feature matrix:

X = ​ ​ ​ ​ ​ ​ =
size ​1

size ​2

size ​3

age ​1
age ​2
age ​3

beds ​1

beds ​2

beds ​3

loc ​1

loc ​2

loc ​3

​ ​ ​ ​ ​ ​

1500
2100
800

10
2

50

3
4
2

0.8
0.9
0.3

7 / 56

Computing Predictions Efficiently

Dataset Size | Loop Time | Matrix Time | Speedup
--
 1,000 | 0.21ms | 0.01ms | 21x
 10,000 | 1.79ms | 0.05ms | 34x
 100,000 | 19.39ms | 0.58ms | 33x
 1,000,000 | 196.33ms | 5.43ms | 36x

Why so fast?

CPU's SIMD instructions
Cache-friendly memory access
Optimized BLAS libraries
Critical for iterative methods later!

8 / 56

Performance Impact

Remember our 10% error on house prices? Let's discover why calculus and linear
algebra together give us a direct path to the best weights.

Simple example with two houses:

House 1: 1000 sq ft → 300k dollars
House 2: 2000 sq ft → 600k dollars

Notice: When size doubles (1000 → 2000), price doubles too (300k → 600k)

9 / 56

Finding Optimal Weights: The Math in 1D

Error for a given weight (price per sq ft, in):

error(w) = (300 − 1000w) +2 (600 − 2000w)2

To minimize: Set derivative to zero and solve

−2(1000)(300 − 1000w) − 2(2000)(600 − 2000w) = 0

Collecting terms:

(1000 +2 2000)w =2 1000(300) + 2000(600)

In terms of data matrix:

X Xw =T X yT

w k

10 / 56

Finding Optimal Weights in 1D

For multiple features, we minimize:

error = ​(y ​ −
i=1

∑
n

i w x ​)T
i

2

Taking partial derivatives:

​ error =
∂w ​j

∂
−2 ​x ​(y ​ −

i=1

∑
n

ij i w x ​) =T
i 0

In matrix form:

−2X (y −T Xw) = 0

X Xw =T X yT
11 / 56

More Generally: Calculus → Lin Alg

Calculus turns "minimize prediction error" into "solve the normal equations"

X Xw =T X yT

X X =T
​ ​ ​ ​ ​

size ⋅ size
age ⋅ size
beds ⋅ size

size ⋅ age
age ⋅ age
beds ⋅ age

size ⋅ beds
age ⋅ beds
beds ⋅ beds

These equations have beautiful properties:

1. One equation per weight
2. Linear in the weights

3. Error vector at solution becomes orthogonal to (Xw ​ −⋆ y) w ​⋆ X
12 / 56

The Normal Equations

Calculus turns minimizing prediction error into solving linear equations

X Xw =T X yT

System size depends on features, not data:

 houses, features

 is

 is
Even with millions of houses, system stays small!

n p

X n × p

X XT p × p

13 / 56

The Normal Equations

When we multiply , each entry combines feature vectors:

A = X X =T
​ ​ ​ ​ ​

size ⋅ size
age ⋅ size
beds ⋅ size

size ⋅ age
age ⋅ age
beds ⋅ age

size ⋅ beds
age ⋅ beds
beds ⋅ beds

Properties:

Diagonal entries sum squares (always positive)
Off-diagonal entries show feature correlations

X XT

14 / 56

Structure of Normal Equations

Remember our plan:

1. Convert predictions into matrix operations ✓
2. Formulate optimization problem ✓
3. Convert to linear equations ✓
4. Solve equations efficiently ← We are here!

Today: Three methods for solving normal equations:

Gaussian elimination, LU factorization, and QR factorization

15 / 56

Direct Solution Methods

Example with three features:

X = torch.tensor([
 [1500, 10, 3], # house 1: size, age, bedrooms
 [2100, 2, 4], # house 2
 [800, 50, 2], # house 3
 [1800, 15, 3] # house 4
])
y = torch.tensor([500000, 800000, 250000, 550000])

The normal equations give us a system where:

 is square matrix (3 × 3)

 combines features and prices

(X X)w =T X yT Aw = b

A = X XT

b = X yT

16 / 56

Direct Solution Methods

Computational Efficiency

(1) measured by number of arithmetic operations, (2) critical for large systems, (3)
affects running time directly

Numerical Stability

(1) how measurement errors get amplified, (2) critical when features are correlated, (3)
can make fast methods unreliable

17 / 56

Key considerations:

Two main costs:

1. Formation: Computing and
2. Solution: Solving the resulting system

With houses and features:

Computing : operations (dot products of size vectors)

Computing : operations (dot products of size vectors)

Solving system: operations (gaussian elimination)

X XT X yT

n p

X XT np2 p2 n

X yT np p n

p × p ​3
2p3

18 / 56

Cost Analysis of Direct Methods

Which dominates depends on problem size:

Many houses, few features: Formation dominates
n, p = 1000, 10 # 1000 houses, 10 features
formation_cost = n * p**2 # 100,000 operations
solution_cost = (2 * p**3) // 3 # ~667 operations

Many houses, many features: Both costs significant
n, p = 1000, 100 # Same houses, more features
formation_cost = n * p**2 # 10 million operations
solution_cost = (2 * p**3) // 3 # ~667,000 operations

Few houses, many features: Solution dominates!
n, p = 50, 200 # 50 houses, 200 features
formation_cost = n * p**2 # 2 million operations
solution_cost = (2 * p**3) // 3 # ~5.3 million operations

19 / 56

Cost Analysis of Direct Methods

Key insights:

n >> p: Formation cost dominates
n ≈ p: Both costs matter
n << p: Solution cost dominates

Now let's recall a method you all know from lin alg: Gaussian elimination

20 / 56

Cost Analysis of Direct Methods

Gaussian elimination solves equations by systematically removing variables. The idea
is simple:

use one equation to eliminate a variable from the others, then repeat.

We'll create zeros below the diagonal one column at a time, turning our system into an
equivalent triangular form that's easy to solve by back-substitution.

21 / 56

Gaussian Elimination Steps

Step 1: First Elimination

Goal: Create zeros in first column below

Compute multipliers:

m ​ =21 ​ and m ​ =
a ​11

a ​21
31 ​

a ​11

a ​31

After row operations:

​ ​ (24 operations: 12 multiplications, 12 subtractions)​ ​ ​

a ​11

0

0

a ​12

a ​22
′

a ​32
′

a ​13

a ​23
′

a ​33
′

​

b ​1

b ​2
′

b ​3
′

a ​11

22 / 56

Gaussian Elimination Steps

Step 2: Second Elimination

Goal: Create zero in second column below

Compute multiplier:

m ​ =32 ​

a ​22
′
a ​32

′

After row operations:

​ ​ (8 operations: 4 multiplications, 4 subtractions)​ ​ ​

a ​11

0

0

a ​12

a ​22
′

0

a ​13

a ​23
′

a ​33
′′

​

b ​1

b ​2
′

b ​3
′′

a22
′

23 / 56

Gaussian Elimination: Step 2

Step 3: Back-substitution

​ ​ ​ ​

w ​3

w ​2

w ​1

= ​

a ​33
′′
b ​3

′′

= ​

a ​22
′

b ​ − a ​w ​2
′

23
′

3

= ​

a ​11

b ​ − a ​w ​ − a w ​1 12 2 13 3

(1 division)

(2 ops + 1 division)

(4 ops + 1 division)

Total operations:

6 divisions
19 multiplications
19 additions/subtractions 24 / 56

Gaussian Elimination: Back-substitution

For our 3×3 system, we needed 6 divisions, 19 multiplications, and 19 additions or
subtractions. Looking at how these counts arise reveals the pattern:

each elimination step processes one column, requiring operations proportional to the
size of the remaining matrix. For an system, this pattern leads to approximately

 operations for elimination and another for back-substitution.
p × p

​3
2p3

​2
p2

25 / 56

Cost in general

Imagine this scenario:

You've just computed optimal weights for 1000 houses
Then 100 new houses sell, with different prices
Market conditions shift existing home values
Seasonal patterns affect current listings

Each change means new optimal weights. Can we avoid redoing all our work?

LU factorization is

a clever way to reorganize Gaussian elimination that becomes especially valuable
when we need to update our predictions with new house prices. Instead of solving the
entire system again, we'll see how to reuse much of our previous work.

26 / 56

LU Factorization

LU factorization is a factorization of the A into upper and lower triangular matrices:

A = LU = ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

1
m ​21

m ​31

0
1
m ​32

0
0
1

u ​11

0
0

u ​12

u ​22

0

u ​13

u ​23

u ​33

It is highly useful for solving linear equations, as we will see.

27 / 56

LU Factorization

1. Forward substitution (), where ():

​ ​

v ​1

v ​2

v ​3

= b ​1

= b ​ − m ​v ​2 21 1

= b ​ − m ​v ​ − m ​v ​3 31 1 32 2

2. Back substitution ():

​ ​

w ​3

w ​2

w ​1

= y ​/u ​3 33

= (y ​ − u ​w ​)/u ​2 23 3 22

= (y ​ − u ​w ​ − u ​w ​)/u ​1 12 2 13 3 11

Lv = b v = Uw

Uw = y

28 / 56

Solving with LUw = b

Step 1: Create zeros in first column

​ ​ ​ ​ ​ →

a ​11

×

×

a ​12

a ​22

a ​32

a ​13

a ​23

a ​33

​ ​ ​ ​ ​

a ​11

0

0

a ​12

a ​22
′

a ​32
′

a ​13

a ​23
′

a ​33
′

Multipliers:

m ​ =21 ​ and m ​ =
a ​11

a ​21
31 ​

a ​11

a ​31

29 / 56

LU Factorization: The Process

After first column elimination:

A = ​ ​ ​ ​ ​ =

a ​11

a ​21

a ​31

a ​12

a ​22

a ​32

a ​13

a ​23

a ​33

​ ​ ​ ​ ​ ×

1

m ​21

m ​31

0

1

0

0

0

1

​ ​ ​ ​ ​

a ​11

0

0

a ​12

a ​22
′

a ​32
′

a ​13

a ​23
′

a ​33
′

Next step: eliminate using

a ​ =22
′ a ​ −22 m ​a ​21 12

a ​ =23
′ a ​ −23 m ​a ​21 13

a ​ =32
′ a ​ −32 m ​a ​31 12

a ​ =33
′ a ​ −33 m ​a ​31 13

a ​32
′ m ​ =32 a ​/a ​32

′
22
′

30 / 56

LU Factorization: Recording Our Work

After second column elimination:

A = ​ ×

L (elimination history)

​​ ​ ​ ​ ​

1

m ​21

m ​31

0

1

m ​32

0

0

1

​

U (eliminated system)

​​ ​ ​ ​ ​

a ​11

0

0

a ​12

a ​22
′

0

a ​13

a ​23
′

a ​33
′′

m ​ =32 a ​/a ​32
′

22
′

a ​ =33
′′ a ​ −33

′ m ​a ​32 23
′

31 / 56

LU Factorization: Recording Our Work

When market conditions change:

Features () stay the same

Only prices () change

 remains unchanged

Can reuse and !

Example with daily updates for a year:

Operation Without LU With LU
First solution 677K ops 677K ops
365 updates 247M ops 3.7M ops
Savings 98.5%

X

y

A = X XT

L U

32 / 56

LU Factorization: Why It's Useful

def solve_with_lu(X, y):
 """Initial solution with LU factorization"""
 # Form normal equations
 XtX = X.T @ X
 Xty = X.T @ y

 # Factor once
 L, U = torch.lu(XtX)

 # Solve two triangular systems
 y = torch.triangular_solve(Xty, L, upper=False)[0]
 w = torch.triangular_solve(y, U)[0]
 return w, L, U

def update_solution(L, U, X, y_new):
 """Fast update when only prices change"""
 Xty = X.T @ y_new
 y = torch.triangular_solve(Xty, L, upper=False)[0]
 return torch.triangular_solve(y, U)[0]

33 / 56

LU Factorization: Implementation

LU factorization is fast for updates, but inherits a critical issue:

Correlated create unstable systems: small errors → large weight changes
Called ill-conditioning and can lead to numerically inaccurate solutions.

Can happen in practice:

Square footage and rooms are highly correlated
X = torch.tensor([
 [1500, 6], # 1500 sq ft ≈ 6 rooms, 1500/6 = 250
 [2000, 8], # 2000 sq ft ≈ 8 rooms, 2000/8 = 250
 [1800, 7] # 1800 sq ft ≈ 7 rooms, 1800/7 ~ 257
])

34 / 56

LU Factorization: A Hidden Weakness

Key insight: Matrix multiplication stretches space

Some directions get stretched more than others
This stretching can reveal hidden problems
We can measure this stretching!

Example: Unit vectors get stretched differently

​ ​ ​ =[100
0

0
0.1] [1

0] ​[100
0]

​ ​ ​ =[100
0

0
0.1] [0

1] ​[0
0.1]

35 / 56

Ill-conditioning: diagonal case

For diagonal matrices, stretching is obvious:

D = ​ ​[100
0

0
0.1]

Horizontal direction: stretched by 100
Vertical direction: shrunk to 0.1
Ratio of stretching = 100/0.1 = 1000

This ratio is called the condition number

Large ratio → ill-conditioned
Small ratio → well-conditioned

κ(D) = 1000

36 / 56

Ill-conditioning: diagonal case

D = ​ ​[1
0

0
0.0001]

Solving for two similar right-hand sides:

D = torch.tensor([[1.0, 0.0], [0.0, 0.0001]])
y1 = torch.tensor([1.0, 0.0])
y2 = torch.tensor([1.0, 0.01]) # tiny change in second component

x1 = torch.solve(y1, D)[0]
x2 = torch.solve(y2, D)[0]

print(f"x1: {x1}") # [1.0, 0.0]
print(f"x2: {x2}") # [1.0, 100.0] # huge change!

Small change in y → huge change in x in the direction of small stretching!

Dx = y

37 / 56

Seeing Instability: diagonal case

For non-diagonal matrices, stretching is hidden:

A = ​ ​[1
1

1
1.001]

This matrix represents nearly perfectly correlated features:

First feature ≈ second feature
Their difference barely affects output
Their sum has large effect

This creates very uneven stretching in different directions.

38 / 56

More General Matrices

Key insight: SVD reveals the directions and amounts of stretching in any matrix!

A = UΣV T

Each part has a specific role:

1. : rotates/reflects to directions of maximum/minimum stretching

2. : stretches by singular values in those directions
3. : rotates/reflects to final orientation (independent of)

n × p

V T

Σ
U V

39 / 56

From Diagonal to General Matrices

The diagonal elements of determine the stretching

A = UΣV T

A = torch.tensor([[1.0, 1.0], [1.0, 1.001]])
U, S, Vt = torch.linalg.svd(A)
print(f"Stretching amounts: {S}") # [2.001, 0.001]

The tiny singular value (0.001) reveals the near dependency!

In general, we define the condition number as the ratio of the largest to smallest
(nonzero) stretching:

κ(A) = σ ​/σ ​max min

Σ

40 / 56

The condition number

Features with condition number ≈ 4000
X = torch.tensor([[1.0, 1.0], [1.0, 1.001]])
U, s, Vt = torch.linalg.svd(X)
print(f"Singular values: {s}")
s ≈ [2.001, 0.0005] # Ratio ≈ 4000!

Original problem
w_true = torch.tensor([1.0, 0.0])
y1 = X @ w_true # y1 ≈ [1.000, 1.000]
w1 = torch.solve(X.T @ X @ w_true) # w1 ≈ [1.000, 0.000]

Perturb along direction of small singular value
u2 = U[:, 1] # u2 ≈ [-0.707, 0.707]
perturbation = 0.001 * torch.norm(y1) * u2
y2 = y1 + perturbation # y2 ≈ [0.999, 1.001]
 # (0.1% change in y)

Solve perturbed system
w2 = torch.solve(X.T @ X @ y2) # w2 ≈ [-1.001, 2.000]
 # (283% change in w!)

41 / 56

Seeing Instability: Correlated Features

When solving :

Small changes in b's "small-stretch directions" force large changes in to compensate

Normal equations make this worse:

 squares the singular values (check!)
Stretching ratios: 1:10000 → 1:100000000
Makes an already sensitive problem much worse

Ax = b

x

X X =T V Σ V2 T

42 / 56

Understanding the Instability

Is it possible to solve the linear regression problem without ever forming ?X XT

43 / 56

Question

Instead of squaring the condition number:

1. Work directly with

2. Find orthogonal directions ()

3. Solve triangular system ()

Benefits:

Avoids squaring condition number
More stable computations
Still efficient

X

Q

R

44 / 56

A partial remedy: QR Factorization

Instead of forming , decompose directly:

X = QR

where:

: orthogonal matrix (perpendicular columns)

: upper triangular matrix

def solve_regression(X, y):
 """Solve linear regression using QR factorization"""
 Q, R = torch.qr(X)
 return torch.triangular_solve(Q.T @ y, R)[0]

X XT X

Q

R

45 / 56

QR Factorization: The Details

 has special properties:

Columns are perpendicular (orthogonal)
Each column has length 1 (normalized)

 (identity matrix)

Check orthogonality:

print("Q^T @ Q =\n", Q.T @ Q)

Output:
tensor([[1.0000, 0.0000, 0.0000],
[0.0000, 1.0000, 0.0000],
[0.0000, 0.0000, 1.0000]])

Q

Q Q =T I

46 / 56

Properties of QR

For a data matrix with rows and columns:

R = ​ ​ ​ ​​ ​ ​

r ​11

0
0
0

⋮
0

r ​12

r ​22

0
0

⋮
0

r ​13

r ​23

r ​33

0

⋮
0

← upper triangular p × p part

← zeros in remaining rows

Key insight:

Only need top part for solving
Bottom rows are all zeros
Much more efficient than working with full matrices!

X n p

p × p

n × n 47 / 56

Structure of R

Start with original problem and QR decomposition:

Xw = y becomes QRw = y

Key insight: Multiply both sides by to "untangle" equations

Why this works:

​ ​

Q (QRw)T

(Q Q)RwT

IRw

Rw

= Q yT

= Q yT

= Q yT

= Q yT

Beautiful result: Problem becomes triangular without forming !

QT

X XT 48 / 56

Solving with QR: The Key Insight

With 4 houses and 3 features:

 is (houses × features)

 is (orthogonal)

 is (same shape as)

Only need top part of

The system becomes:

​ ​ ​ ​ ​ ​ ​ ​ =
r ​11

0
0

r ​12

r ​22

0

r ​13

r ​23

r ​33

w ​1

w ​2

w ​3

​ ​ ​

c ​1

c ​2

c ​3

where

X 4 × 3

Q 4 × 4

R 4 × 3 X

3 × 3 R

Rw = Q yT

c = Q yT 49 / 56

Solving with QR: A 4×3 Example

Solve from bottom up:

​ ​

w ​3

w ​2

w ​1

= c ​/r ​3 33

= (c − r ​w ​)/r ​2 23 3 22

= (c − r ​w ​ − r ​w ​)/r ​1 12 2 13 3 11

Clean implementation:

def solve_regression(X, y):
 """Solve linear regression using QR factorization"""
 Q, R = torch.qr(X)
 return torch.triangular_solve(Q.T @ y, R)[0]

50 / 56

Back Substitution with QR

Operation counts:

Normal Equations + LU: to form , then to factor

QR: to factor directly

When (many more houses than features):

Formation cost dominates
LU theoretically twice as fast
But numerical stability often more important!

np2 X XT ​3
2p3

2np2 X

n ≫ p

np2

51 / 56

QR vs Normal Equations: Cost

Generate synthetic house data with correlated features:

Features: sq ft, age, bedrooms + correlated feature
X = torch.stack([sqft, age, bedrooms], dim=1)
X = torch.cat([X, X[:, 0:1] + noise], dim=1) # Add correlated feature

The normal equations change the condition number through the formation of .
Our experiment quantifies this: increases to
million.

QR factorization preserves the original condition number by operating directly on .
The numerical advantage manifests in the prediction accuracy and weight estimates.

X XT

κ(X) = 6, 262 κ(X X) =T 39.2

X

52 / 56

QR vs LU: A Stability Experiment

Weight estimates for price per square foot (true weight: $200):

LU result: $209.25 (4.6% error)
QR result: $199.97 (0.015% error)

Root Mean Square Error (RMSE) quantifies average prediction error:

LU: $138.04 per house
QR: $101.08 per house

53 / 56

QR vs LU: A Stability Experiment (cont.)

Both methods stable in their formulations:

LU: Stable for solving

QR: Stable for solving original

1. Well-conditioned case (): Normal equations with LU suffice (2x speed)
2. Ill-conditioned case (our example): QR's higher cost justified by accuracy

Modern implementations use thin QR (is)

Reduces cost while preserving stability benefits

(X X)w =T X yT

Xw = y

κ(X) ≈ 1

Q n × p

54 / 56

QR vs LU: Stability Analysis

Direct methods face hard constraint:

Must complete entire computation before any solution and high memory.
Minutes of waiting for large problems
Impractical for massive applications

This motivates iterative methods:

Produce increasingly accurate predictions over time
Trade perfect accuracy for faster results
Essential for massive datasets

We'll explore these methods next lecture!
55 / 56

The Limits of Direct Methods

Supopse you computed the SVD of a matrix . How many operations does it take to
solve the system ?

A

Ax = b

56 / 56

Puzzle

