STAT 4830: Numerical optimization for
data science and ML

Lecture 2: Linear Regression: Direct Methods

Professor Damek Davis

1756

Overview

1. Introduction & Prediction with Features
2. Computing Predictions Efficiently

3. Finding Optimal Weights

4. Direct Solution Methods

5. Numerical Stability

6. QR Factorization

2/ 56

Introduction

Last lecture: PyTorch's efficient handling of vectors and matrices

oday: Applying these tools to prediction - a core data science challenge

Four key steps:

1. Converting predictions into matrix operations

2. Formulating the optimization problem
3. Converting optimization into linear equations

4. Solving equations efficiently via direct methods

3/56

Prediction with Multiple Features

Basic house price equation:
price = w; - size + ws - age + ws - bedrooms + wy - location + noise
Vector notation:
Yy=W T +E€

Each weight has clear meaning:

e wi: dollars per square foot
* Wy: price change per year of age
e ws: value per bedroom

e wWy: location premium
4/56

Feature Mapping and Error Analysis

House Prices vs Square Footage

o
500 - ® ®
@ o
— 400 - e © e
k¥ o aw
= o)
E ® L @ ®p o
g O o O 0
& 300 - . °® »
o ® @
s}
[] [[]
200 A o® o o o
® o @]
'l'. ®
I I I I I I I I I
800 1000 1200 1400 1600 1800 2000 2200 2400

Square Footage

e Linear relationships sometimes exist in real data
e Scatter represents noise/unexplained factors

e Simple but powerful approximation

5/56

Code Example: House Price Prediction

house = {
'size': 1500,
‘age': 10,
'bedrooms': 3,
'location': 0.8
I3

X1!
X2!
X31:
Xa:

sq ft
years
count
some score

price = 500000 # y: dollars

def predict_price(house, weights):
""HUPredict house price

return (
welg
welg
welg
welg

nts|
Nts|
Nts |

Nts|

WNR S

¥ ¥ ¥ %

nouse
nouse
nouse

nouse

using linear combination of features™""

['size'] +
['age'] +
'bedrooms'] +

' 'location']

dollars per sq ft
price change per year
value per bedroom
location premium

6/56

Computing Predictions Efficiently

Matrix multiplication for all predictions:
house; : [1500, 10, 3, 0.8| - w1, we, w3, wy| = prediction,
houses : {2100, 2,4,0.9| - |wy, we, w3, wy| = prediction,
houses : (800,50, 2,0.3| - (w1, ws, w3, ws| = prediction,

Feature matrix:

'size; age,; beds; loc; 1500 10 3 0.8
X = |sizes age, bedsy locy| = 12100 2 4 0.9
sizes age; bedss locs 800 50 2 0.3

7 /56

Performance Impact

Dataset Size | Loop Time

1,000
10,000
100,000
1,000,000

Why so tast?

e CPU's SIMD instructions

0.21ms
1.79ms
19.39ms
196.33ms

0.01ms
0.05ms
0.58ms
5.43ms

e Cache-friendly memory access

e Optimized BLAS libraries

e Critical for iterative methods later!

| Matrix Time | Speedup

21X
34x
33X
36X

8/ 56

Finding Optimal Weights: The Math in 1D

Remember our 10% error on house prices? Let's discover why calculus and linear
algebra together give us a direct path to the best weights.

Simple example with two houses:

e House 1: 1000 sqg ft = 300k dollars
e House 2: 2000 sqg ft - 600k dollars

Notice: When size doubles (1000 = 2000), price doubles too (300k = 600k)

9756

Finding Optimal Weights in 1D

Error for a given weight w (price per sq ft, in k):
error(w) = (300 — 1000w)? + (600 — 2000w)?
To minimize: Set derivative to zero and solve
—2(1000)(300 — 1000w) — 2(2000)(600 — 2000w) = 0
Collecting terms:
(1000% + 2000%)w = 1000(300) + 2000(600)
In terms of data matrix:

X' Xw =Xy
10/ 56

More Generally: Calculus = Lin Alg

For multiple features, we minimize:

EeITor — E —wl :137,

Taking partial derivatives:

0
8—w]error = —QZ:UZ] —w'xz;) =0

In matrix form:
22X (y — Xw) =0

X' Xw =Xy
11/56

The Normal Equations

| Calculus turns "minimize prediction error" into "solve the normal equations”

X' Xw = X"y

' size - size size-age size-beds
X'X = | age-size age-age age - beds
beds - size beds-age beds-beds

These equations have beautiful properties:

1. One equation per weight

2. Linear in the weights

3. Error vector (Xw, — ¥) at solution w, becomes orthogonal to X
12 /56

The Normal Equations

| Calculus turns minimizing prediction error into solving linear equations

X' Xw =Xy
System size depends on features, not data:

e 1 houses, p features
e XisnXp
e X' X ispxp

e Even with millions of houses, system stays small!

13756

Structure of Normal Equations

When we multiply X1 X, each entry combines feature vectors:

| size - size size:-age size - beds
A=X'X = | age-size age-age age-beds
| beds - size beds-age beds:-beds

Properties:

e Diagonal entries sum squares (always positive)

e Off-diagonal entries show feature correlations

14/ 56

Direct Solution Methods

Remember our plan:

1. Convert predictions into matrix operations v
2. Formulate optimization problem v

3. Convert to linear equations v

4. Solve equations efficiently < We are here!

Today: Three methods for solving normal equations:

Gaussian elimination, LU factorization, and QR factorization

15756

Direct Solution Methods

Example with three features:

X = torch.tensor(I[

1500, 10, 31, # house 1: size, age, bedrooms
2100, 2, 4], # house 2

800, 50, 21, # house 3

1800, 15, 3] # house 4

1)
y = torch.tensor([500000, 800000, 250000, 550000])

The normal equations (X? X)w = X1y give us a system Aw = b where:

e A= XTXis square matrix (3 x 3)

e b = X'y combines features and prices

16/ 56

Key considerations:

e Computational Efficiency

(1) measured by number of arithmetic operations, (2) critical for large systems, (3)
affects running time directly

e Numerical Stability

(1) how measurement errors get amplified, (2) critical when features are correlated, (3)

can make fast methods unreliable

17756

Cost Analysis of Direct Methods

Two main costs:

1. Formation: Computing X* X and X1y

2. Solution: Solving the resulting system
With n houses and p features:

e Computing X! X: np? operations (p? dot products of size n vectors)

e Computing XTy: np operations (P dot products of size n vectors)

3
e Solving p X p system: 2% operations (gaussian elimination)

18 /56

Cost Analysis of Direct Methods

Which dominates depends on problem size:

Many houses, few features: Formation dominates
n, p =1000, 10 # 1000 houses, 10 features
formation_cost = n % pxk2 # 100,000 operations
solution_cost = (2 x p*xx3) // 3 # ~667 operations

Many houses, many features: Both costs significant
n, p = 1000, 100 # Same houses, more features
formation_cost = n % pxkx2 # 10 million operations
solution_cost = (2 x px%x3) // 3 # ~667,000 operations

Few houses, many features: Solution dominates!

n, p =50, 200 # 50 houses, 200 features

formation_cost = n % pxx2 # 2 million operations
solution_cost = (2 % pxx3) // 3 # ~5.3 million operations

19756

Cost Analysis of Direct Methods

Key insights:

e n>> p: Formation cost dominates
e n =~ p: Both costs matter

* n << p: Solution cost dominates

Now let's recall a method you all know from lin alg: Gaussian elimination

20/ 56

Gaussian Elimination Steps

Gaussian elimination solves equations by systematically removing variables. The idea

is simple:
use one equation to eliminate a variable from the others, then repeat.

We'll create zeros below the diagonal one column at a time, turning our system into an
equivalent triangular form that's easy to solve by back-substitution.

21 /56

Gaussian Elimination Steps

Step 1: First Elimination

Goal: Create zeros in first column below a1

Compute multipliers:

as1 asy
mo1 — —— and m31 — ——
a1 a1
After row operations:
a1 a2 a3 | b
0 ay ays | b (24 operations: 12 multiplications, 12 subtractions)

/ /
0 a3 a3z | bs

22 /56

Gaussian Elimination: Step 2

Step 2: Second Elimination

Goal: Create zero in second column below alzz

Compute multiplier:

a39
m32 — ——
92
After row operations:
a1 a2 a3 | by
0 a) ay | b (8 operations: 4 multiplications, 4 subtractions)

O O a// //
33 | 73 23/56

Gaussian Elimination: Back-substitution

Step 3: Back-substitution

b//
w3 = —>- (1 division)
a33
by — QoW
wy = 22 ’ (2 ops + 1 division)
@22
b1 — — a13W
w; = — 2tz T A1 (4 ops + 1 division)

a1
Total operations:
e 6 divisions

e 19 multiplications

e 19 additions/subtractions 24 /56

Cost in general

For our 3x3 system, we needed 6 divisions, 19 multiplications, and 19 additions or
subtractions. Looking at how these counts arise reveals the pattern:

each elimination step processes one column, requiring operations proportional to the

size of the remaining matrix. For an p X p system, this pattern leads to approximately
2

2p operations for elimination and another for back-substitution.

25/ 56

LU Factorization

Imagine this scenario:

e You've just computed optimal weights for 1000 houses
e Then 100 new houses sell, with different prices
e Market conditions shift existing home values

e Seasonal patterns affect current listings

Each change means new optimal weights. Can we avoid redoing all our work?

LU factorization is

a clever way to reorganize Gaussian elimination that becomes especially valuable
when we need to update our predictions with new house prices. Instead of solving the

entire system again, we'll see how to reuse much of our previous work. 26 / 56

LU Factorization

LU factorization is a factorization of the A into upper and lower triangular matrices:

1 0 0 U1 U2 U13
A=LU = ™91 1 0 0 U929 U933
m31 m32 1] |0 0 wuss_

't is highly useful for solving linear equations, as we will see.

27 /56

Solving with LUw = b

1. Forward substitution (Lv = b), where (v = Uw):

V1 — bl
V9 = by — Moy

v3 = b3 — mg31v1 — M3aV9
2. Back substitution (Uw = y):

W3 = y3/ U33
Wy = (yz — U23’w3)/u22

w1 = (yl — U2Wo — U13w3)/u11
28 /56

LU Factorization: The Process

Step 1: Create zeros in first column

Multipliers:

ail ai2
X a9o
X aso

ai3

a3

as3

asi

mo1 — ——

aijxz dai2 a3
/ /
/ /
L0 a3, ags
a3l
and M3y — ——
aii

29 /56

LU Factorization: Recording Our Work

After first column elimination:

® Q99 — A22 — M210A712

® Q93 — Q23 — MN210A13

® Qg9 — Q32 — M31A12
* a33 = as3 — M31013
;1 a2 a3 1 0 0 a11 a2 aiz
A= [a ax ap|=|ma 1 0] x| 0 aj ay
a31 Q32 Q33 mg; 0 1] L0 a3 ass]

Next step: eliminate a'32 using 1Mmso = a'gz/a'gg 30/ 56

LU Factorization: Recording Our Work

After second column elimination:

L / /
* M3z = asz/ A9

/! / /
® Qg3 — Qg3 — TN32093

191 1 0

mg1 Mzy 1
N —
L (elimination history)

X

aijxz dai2 a3

/ /
0 ay asg

"
0 0 asq
S —
U (eliminated system)

31/56

LU Factorization: Why It's Useful

When market conditions change:

e Features (X)) stay the same
e Only prices (y) change
e A= X"'X remains unchanged

e Canreuse L and U

Example with daily updates for a year:

Operation Without LU With LU
First solution 677K ops 677K ops
365 updates 247M ops 3.7M ops
Savings 98.5%

32/ 56

LU Factorization: Implementation

def

def

solve _with_lu(X, y):

"HHTnitial solution with LU factorization
Form normal equations

XtX = X.T @ X

Xty = X.T @y

Factor once
L, U = torch. lu(XtX)

Solve two triangular systems

y = torch.triangular_solve(Xty, L, upper=False) [0]
w = torch.triangular_solve(y, U)[0]

return w, L, U

update_solution(L, U, X, y_new):

""U"Fast update when only prices change"""

Xty = X.T @ y_new

y = torch.triangular_solve(Xty, L, upper=False) [0]
return torch.triangular_solve(y, U)[0]

33 /56

LU Factorization: A Hidden Weakness

LU factorization is fast for updates, but inherits a critical issue:

e Correlated create unstable systems: small errors = large weight changes

e Called ill-conditioning and can lead to numerically inaccurate solutions.

Can happen in practice:

Square footage and rooms are highly correlated
X = torch.tensor([

1500, 6], # 1500 sq ft
2000, 8], # 2000 sq ft
(1800, 7. # 1800 sq ft

0
|

6 rooms, 1500/6 250
8 rooms, 2000/8 250
/ rooms, 1800/7 ~ 257

0
|

0

34 /56

lll-conditioning: diagonal case

Key insight: Matrix multiplication stretches space

e Some directions get stretched more than others
e This stretching can reveal hidden problems

e \We can measure this stretching!

Example: Unit vectors get stretched ditferently

100 0 | |1 100

0 o01|]o] |0
100 0] (0] [o°
0 01f 1]~ |01

35/56

lll-conditioning: diagonal case

For diagonal matrices, stretching is obvious:

D =

e Horizontal direction: stretched by 100

e Vertical direction: shrunk to 0.1
e Ratio of stretching = 100/0.1 = 1000

This ratio is called the condition number (D) = 1000

e Large ratio = ill-conditioned

e Small ratio = well-conditioned

100
0

0
0.1

36/ 56

Seeing Instability: diagonal case
S

2 =10 0.0001

Solving Dx = y for two similar right-hand sides:

D = torch.tensor([[1.0, 0.0], [0.0, 0.0001]1])

yl = torch.tensor([1.0, 0.0])

y2 = torch.tensor([1.0, 0.01]) # tiny change in second component
x1 = torch.solve(yl, D) [0]

x2 = torch.solve(y2, D) [0]

print(f"x1: {x1}") # [1.0, 0.0]
print(f'"x2: {x2}") # [1.0, 100.0] # huge change!

Small change iny = huge change in x in the direction of small stretching!
37756

More General Matrices

For non-diagonal matrices, stretching is hidden:

1 1

A= 1 1.001

This matrix represents nearly perfectly correlated features:

e First feature = second feature

e Their difference barely affects output

e Their sum has large effect

This creates very uneven stretching in different directions.

38/ 56

From Diagonal to General Matrices

Key insight: SVD reveals the directions and amounts of stretching in any . X p matrix!
A=UxV"

Each part has a specitic role:

1. V1. rotates/reflects to directions of maximum/minimum stretching

2. 2. stretches by singular values in those directions

3. U: rotates/reflects to final orientation (independent of V')

Yo = 01(Uz1v1 + Ugovs)

(00 (%} g2U9 0'1’01
v)y
T T
y1 = o1(u11v1 + u12v2)
I

\“ZJB = 01 (u31v1 + u32v2)

39 /56

The condition number

The diagonal elements of 2J determine the stretching
A=UxVv"!

A = torch.tensor([[1.0, 1.0], [1.0, 1.001]1])
U, S, Vt = torch.linalg.svd(A)
print(f"Stretching amounts: {S}") # [2.001, 0.001]

The tiny singular value (0.001) reveals the near dependency!

In general, we define the condition number as the ratio of the largest to smallest
(nonzero) stretching:

K,(A) — O-ma,x/o-min

40/ 56

Seeing Instability: Correlated Features

Features with condition number = 4000
X = torch.tensor([[1.0, 1.0], [1.0, 1.001]11])
U, s, Vt = torch.linalg.svd(X)
print(f"Singular values: {s}")

~ [2.001, 0.0005] # Ratio = 4000!

Original problem

w_true = torch.tensor([1.0, 0.0])

yl = X @ w_true # yl
wl = torch.solve(X.T @ X @ w_true) # wl

N

[1.000, 1.000]
[1.000, 0.000]

U

Perturb along direction of small singular value

= Ul:, 1] # u2 = [-0.707, 0.707]
perturbation = 0.001 * torch. norm(yl) * U2
y2 = yl1 + perturbation # y2 = [0.999, 1.001]
(0.1% change in y)

Solve perturbed system
w2 = torch.solve(X.T @ X @ y2) # w2 = [-1.001, 2.000]
(283% change in w!)

41756

Understanding the Instability

When solving Ax = b:

e Small changes in b's "small-stretch directions" force large changes in © to compensate

Normal equations make this worse:

e XI'X =vX2y?t squares the singular values (check!)
e Stretching ratios: 1:10000 = 1:100000000

e Makes an already sensitive problem much worse

42 / 56

Question

s it possible to solve the linear regression problem without ever forming X< X ?

43 /56

A partial remedy: QR Factorization

Instead of squaring the condition number:

1. Work directly with X
2. Find orthogonal directions (())

3. Solve triangular system (R)

Benefits:

e Avoids squaring condition number
e More stable computations

e Still efficient

44 / 56

QR Factorization: The Details

Instead of forming X' X, decompose X directly:
X =QR

where:

e (): orthogonal matrix (perpendicular columns)

e R: upper triangular matrix

def solve regression(X, y):
""1Solve linear regression using QR factorization™""
Q, R = torch.qr(X)
return torch.triangular_solve(Q.T @ y, R)I[0]

45/ 56

Properties of QR

() has special properties:

e Columns are perpendicu

e Each column has length °

ar (orthogonal)

(normalized)

o QTQ = I (identity matrix)

Check orthogonality:

print("Q~*T @ Q =\n", Q.T @ Q)

Output:

tensor([[1.0000, 0.0000,
[0.0000, 1.0000,
[0.0000, 0.0000,

0.0000],
0.0000],
1.0000]])

46/ 56

Structure of R

For a data matrix X with 1 rows and p columns:

ri Tiz Ti3
0 722 723 |
0 O 7g3| ¢ Upper triangular p x p part
B=10 0 0
, {— Z€eros In remaining rows
0 0 0

Key insight:

e Only need top p X p part for solving
e Bottom rows are all zeros

e Much more efficient than working with full n X m matrices! 47 / 56

Solving with QR: The Key Insight

Start with original problem and QR decomposition:

Xw=1vy becomes QRw =1y
Key insight: Multiply both sides by Q* to "untangle" equations

Why this works:
Q" (QRw) =Qy
(@' Q)Rw =Q"y
IRw = Q'y
Rw=Q"y

Beautiful result: Problem becomes triangular without forming X X | 48 /56

Solving with QR: A 4x3 Example

With 4 houses and 3 features:

e X is4 x 3 (houses x features)
e ()is4d x 4 (orthogonal)
e Ris4 x 3 (same shape as X)

e Onlyneedtop 3 X 3 partof R

The system Rw = Q!y becomes:

11 T12 Ti13 w1 C1
0 7T99 7Togz| [wa| = |
i 0 0 733 | W3 63_

NI
wherec = Q" y 49 / 56

Back Substitution with QR

Solve from bottom up:

W3 — 03/7°33
W2 = (Cz — 7’23w3)/"°22

w1 = (01 — T12Wo — 7“13’603)/7‘11

Clean implementation:

def solve regression(X, y):
"1Solve linear regression using QR factorization
Q, R = torch.qr(X)
return torch.triangular_solve(Q.T @ y, R)[0]

50/ 56

QR vs Normal Equations: Cost

Operation counts:

3
e Normal Equations + LU: np? to form X* X, then 2% to factor

e QR: 2np? to factor X directly
When n > p (many more houses than features):

¢ Formation cost np? dominates

e LU theoretically twice as fast

e But numerical stability often more important!

51756

QR vs LU: A Stability Experiment

Generate synthetic house data with correlated features:

Features: sq ft, age, bedrooms + correlated feature
X = torch.stack([sqft, age, bedrooms], dim=1)
X = torch.cat([X, X[:, 0:1] + noisel, dim=1) # Add correlated feature

The normal equations change the condition number through the formation of X% X
Our experiment quantifies this: k(X) = 6,262 increases to k(X' X) = 39.2

million.

OR factorization preserves the original condition number by operating directly on X.
The numerical advantage manifests in the prediction accuracy and weight estimates.

52 /56

QR vs LU: A Stability Experiment (cont.)

Weight estimates for price per square foot (true weight: $200):

e |Uresult: $209.25 (4.6% error)
e QR result: $199.97 (0.015% error)

Root Mean Square Error (RMSE) quantifies average prediction error:

e LU: $138.04 per house
e QR: $101.08 per house

53 /56

QR vs LU: Stability Analysis

Both methods stable in their formulations:

e LU: Stable for solving (XTX)w — X1y
e QR: Stable for solving original Xw = vy

1. Well-conditioned case (H(X) ~ 1): Normal equations with LU suffice (2x speed)

2. lll-conditioned case (our example): QR's higher cost justitied by accuracy

Modern implementations use thin QR (() is n X p)

Reduces cost while preserving stability benefits

54 /56

The Limits of Direct Methods

Direct methods face hard constraint:

e Must complete entire computation before any solution and high memory.

e Minutes of waiting for large problems

e Impractical for massive applications

his motivates iterative methods:

e Produce increasingly accurate predictions over time

e Trade perfect accuracy for faster results

e Essential for massive datasets

We'll explore these methods next lecture!
55/ 56

Puzzle

Supopse you computed the SVD of a matrix A. How many operations does it take to

solve the system Ax = b?

56/ 56

