STAT 4830: Numerical optimization for
data science and ML

Lecture O: Introduction

Professor Damek Davis

1/28

Course overview

e Focus: Numerical optimization for data science and ML

e Tools: PyTorch, Python, occasional use of other libraries
e LLM Policy: Use them.

e Deliverables: HW, final project

o Homework: 0-5 assignments.

o Final Project: Incrementally developed throughout semester (more later)

2/ 28

Why Optimization?

"If you want to know something deep, fundamental, and maximally portable
between virtually every tield: study mathematical optimization."

— Joshua Achiam (OpenAl)

3/28

A Briet History of Optimization

EVOLUTION OF OPTIMIZATION

1950s

Dantzig's
Simplex Method

LINEAR PROGRAM.

v
APPLICATIONS:
e Military
e Logistics
e Planning

1960s-1990s

CONVEX OPTIM.

—| Interior-point

Large—-scale

v
APPLICATIONS:
e Engineering
e Control
e Networks

2000s

SOLVER ERA
— | CVX & friends
"Write 1t,
solve 1t"

v
APPLICATIONS:
e Signal Process
e Finance
e Robotics

TODAY

DEEP LEARNING

—| PyTorch & JAX

Custom Llosses

LLM Revolution

v
APPLICATIONS:

e Language Models

e Image Gen
e RL & Control

4/28

Do you have access to and experience
with LLMs?

Modern optimization and ML development fundamentally requires Al assistance for:

- Debugging complex numerical code

- Exploring implementation alternatives
- Understanding mathematical concepts
- Rapid prototyping of algorithms

Without these tools, students would:

1. Struggle with industry-standard development practices
2. Miss critical job-market skills

3. Face unnecessary friction in learning core concepts

The course focuses on practical implementation - Al assistance isn't optional, its core to modern development
workflows.

5/28

Dev Environment: cursor

GETTING STARTED WITH CURSOR

WRITE CODE
As you type

\ /

AI assists

A

DAY 1: START HERE

STUCK?

Just press Cmd+K
| for instant help

\4

QUICK HELP
Cmd+K

v

WHEN YOU'RE READY

Need deeper help?
Try the composer!

BACK TO CODE

COMPOSER

DEEP DIVING
Debug & Learn

QUICK HELP (Cmd+K):
e "Fix this error"
e "Explain this code"
e "Add a test here"

Cmd+L

\

ADVANCED FEATURES

COMPOSER (Cmd+L):
 Complex debugging
 Step-by-step learning
e Extended discussions

e Git integration
e Multi-file edits
e Testing tools

6/ 28

https://www.cursor.com/

Prerequisites

e Basic calculus and linear algebra (Math 2400)
e Basic probability (Stat 4300)
e Python programming experience

e No advanced optimization/ML background needed

7 /28

Why PyTorch?

e Modern auto-differentiation frameworks drive deep learning success

e Enables rapid experimentation with:

o New model architectures and

o Novel optimization algorithms

e More flexible than traditional solver-based tools

8/ 28

Optimization Approaches Compared

+_ + +t— +
| CLASSICAL TOOLS | | MODERN TOOLS |
+— + +— +
WHEN TO USE:		WHEN TO USE:
= Small/Medium Scale		» Large-Scale Data
« Structured Problems		* Unstructured Problems
« Need Formal Guarantees		* Need Speed & Scale
- + VS +-_ +
| INPUT REQUIREMENTS: | | INPUT REQUIREMENTS: |
| = DCP Rules | | » Raw Python Code |
| « Convex Functions | | = Any Function Type |
| « Standard Form | | = Black Box OK |
+—_ + +-_ +
| GUARANTEES: | | CAPABILITIES: |
| Global Optimality | | = Handle Any Problem |
| « Convergence Rates | | « Fast Development |
| « Optimality Certificates | | « Rapid Iteration |
+— + +— +
| WORKFLOW: | | WORKFLOW: |
| 1. Format Problem | | 1. Write Code |
| 2. Verify Convexity | | 2. Train Model |
| 3. Solve Exactly | | 3. Debug & Iterate |
e - e ————— +
| TOOLS: CVX, MOSEK | | TOOLS: PyTorch, JAX |

+— + +— +

HYBRID APPROACHES:

e Use Structure Where Possible
e Add Flexibility Where Needed
e Choose Based on Requirements

9728

Preview: spam classification

Let's start with a practical example:

e How do we automatically filter spam emails?

e Demonstrates core optimization concepts

e Shows PyTorch in action

10/ 28

How computers read email

emaill = """
Subject: URGENT! You've won $1,000,000!'!!
Dear Friend! Act NOW to claim your PRIZE money!!!

email2 = """
Subject: Team meeting tomorrow
Hi everyone, Just a reminder about our 2pm sync.

11728

Feature extraction

Convert text to numbers:

def extract_features(email):

features = {
'exclamation_count': email.count(''"'),
'urgent_words': len(['urgent', 'act now', 'prize']

& set(email. lower().split())),
'suspicious_links': len([link for link in email.split()
if 'www' in link]),

'time_sent': email.timestamp.hour,
'length': len(email)

I3

return features

12728

Classification process

Email Text

1. Extract numeric features
2. Multiply by weights

3. Sum weighted features
4. Convert to probability

Features
I count:
urgent:
links:
length: 14

N = W O

Weights
0.5
0.8
0.6
-0.2

Score

4.2

,//f

Probability
98.5%

13728

The sigmoid function

Converts any number into a probability

(0-1):

def sigmoid(x):
return 1 / (1 + torch.exp(-x))

0.75

Probability
-]
3

0.25 |

Decision Boundary

Spam

Raw score

14 /28

Mathematical formulation

Our optimization problem:

min 3" [~y log(o(a] w)) — (1 - v) log(1L — o(z] w))]

w n
1=1

Where:

e W = weights vector
o I; = feature vector

e 1y; =true label (0/1)

e 0 =sigmoid function

15728

Cross-entropy loss

Confident wrong (0.8)

Copfident right (0.1)

Uncertain prediction (0.3)

0 0.25 0.5 0.75
Prediction

e Penalizes wrong predictions
e Rewards confident correct predictions
e Creates balanced learning

y=—In(1—x)
Right: Not Spam

y = —1In(z)
Right: Spam

16 /28

How Gradient Descent Works

The optimization process works like Start

hiking: \
1. Look around you (measure gradient)
2. Take a step downhill |

3. Repeat until you reach the bottom

Minimum

17728

The optimization loop

Fach iteration:

1. Measure how well current weights classity emails
2. Calculate gradient (direction of steepest error reduction)
3. Update weights by stepping in this direction

4. Repeat until convergence

he learning rate controls step size:

e Too small = slow progress

e Too large = overshooting

18 /28

PyTorch: What, how, and why

What: Modern framework for optimization and deep learning

How:

e Tracks operations in a computational graph
e Automatically computes gradients

e Enables parallel computation (CPU/GPU)
Why:

e Automates the hardest part (gradients)
e Makes experimentation fast

e Scales from simple to complex models
19/ 28

Inside PyTorch: Tensors and autograd

Tensors: The building blocks

X = torch.tensor([1.0, 2.0], requires_grad=True)
y = X %k 2

z = y.sum()

Automatic differentiation
z.backward() # Computes gradients
print(x.grad) # Shows 0z/dx

PyTorch builds a graph of operations, enabling automatic gradient computation.

20/ 28

Implementation in PyTorch

Initialize
weights = torch.randn(5, requires_grad=True)
learning_rate = 0.01

for _ in range(1000):
Forward pass
predictions = spam_score(features, weights)
loss = cross_entropy_loss(predictions, true_labels)

Backward pass
loss.backward()

Update weights

with torch.no_grad():
weights —= learning_rate * weights.grad
weights.grad.zero_()

21/ 28

Try it yourself!

ZC Open in Colab

e Complete implementation in the notebook
e Experiment with different learning rates
e See how the loss changes during training

e Testthe model on new emails

22 /28

https://colab.research.google.com/github/damek/STAT-4830/blob/main/section/0/notebook.ipynb
https://colab.research.google.com/github/damek/STAT-4830/blob/main/section/0/notebook.ipynb

Training results

Training Loss Training Accuracy Test Accuracy
1.0
14 1.0
0.9
0.9
1.2
9 0.8
o
- 0.8
> > 0.7 >
Q. 1.0 o o
o S ©
b - -
L = 0.6 = 0.7
c v 9]
W o8 < <
a < 0.5 < 0.6
@ : :
o
0.6
L o4 0.5
0.3 *
0.4 0.4 -
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Step Step Step

hree key metrics:

e Loss and Training accuracy: Performance on known data.
e Test accuracy: Performance on new emails

23 /28

Course structure

1. Linear algebra & direct methods

2. Problem formulations & classical software
3. Calculus for optimization

4. Automatic differentiation & PyTorch

5. First-order methods

6. Second-order methods

/. Advanced topics

8. Modern deep learning practice

24 /28

Final Project Structure

ITERATIVE DEVELOPMENT PROCESS PROJECT COMPONENTS
INITIAL SETUP DELIVERABLES PROJECT OPTIONS
Teams: 3-4 e GitHub Repo e Model Training
Week 2 Start e Colab Demo e Reproducibility

e Final Paper
e Slide Deck

Benchmarking
Research Extend

v
BIWEEKLY SCHEDULE
v FEEDBACK
PEER REVIEWS: Week 3: Report
IMPLEMENT < e Run Code Week 4: Slides Draft
* Write Code e Test Demo Week 5: Report
e Test & Debug 3| ¢ Give Feedback Week 6: Slides Draft
e Document Week 7: Report
PROF MEETINGS: Week 8: LIGHTNING TALK
« Week 3 Scope Week 9: Report
e Week 7 Mid Week 10: Slides Draft
e Week 11 Final Week 11: Report
Week 12: Slides Draft

Week 13: Final Report
DEVELOPMENT WITH LLMs Week 14: Final Present
e Write & review reports, documentation
 Develop & test code (verify outputs!)
e Reqular commits with clear documentation

25/ 28

Learning outcomes

By course end, you'll be able to:

1. Model real problems as optimization problems
2. Select appropriate algorithms

3. Implement solutions in PyTorch

4. Apply optimization to practical problems

5. Conduct optimization research

26/ 28

Getting started

e Review the syllabus

e Set up Python environment

e Try the Colab notebook

e Start thinking about project ideas

27 /28

https://colab.research.google.com/github/damek/STAT-4830/blob/main/section/0/notebook.ipynb

Questions?

e Course website: https://damek.github.io/STAT-4830/

e Office hours: Listed on the course website
e Email: damek@wharton.upenn.edu

e Discord: Check email for invite.

28 /28

https://damek.github.io/STAT-4830/
mailto:damek@wharton.upenn.edu

