

Lecture 3: Linear Regression - Gradient Descent

Professor Damek Davis

1 / 28

STAT 4830: Numerical optimization for
data science and ML

Consider genomic prediction: 1000 patients, 100,000 genetic markers

n_samples = 1000
n_markers = 100_000
memory_needed = (n_markers * n_markers * 8) / (1024**3) # in GB
print(f"Memory needed for X^TX: {memory_needed:.1f} GB") # 80.0 GB

Just forming would exceed most workstations' memory!X X⊤

2 / 28

The Memory Wall

MRI reconstruction with voxels:

Matrix size:
Memory for : 2.2 petabytes
That's 0.2% of world's total data center storage in 2023!

These aren't edge cases - they're routine analysis tasks.

2563

256 ×3 2563

X X⊤

3 / 28

Even Worse: Medical Imaging

Direct methods solve normal equations :

Direct method (fails for large p)
XtX = X.T @ X # Form p × p matrix
Xty = X.T @ y # Form p × 1 vector
w = solve(XtX, Xty) # Solve p × p system

Costs:

1. Forming : operations, memory

2. Forming : operations, memory

3. Solving system: operations

X Xw =⊤ X y⊤

X X⊤ O(np)2 O(p)2

X y⊤ O(np) O(p)

O(p)3

4 / 28

Why Direct Methods Fail

Results on MacBook M1 Pro (64GB RAM):

Size (p) Memory for X^TX Time Status
1,000 8MB 0.005s Fast, fits in fast memory
5,000 200MB 0.182s Fits in RAM
20,000 3.2GB 5.209s RAM stressed
50,000 20GB FAILS Out of memory

Memory becomes bottleneck before computation time!

5 / 28

Experimental Results: Memory Wall

The pattern is clear: memory becomes the bottleneck long before computation time!
6 / 28

Experimental Results: Scaling Behavior

One memory-efficient alternative is gradient descent:

This forms a huge p × p matrix (bad)
XtX = X.T @ X # Need O(p²) memory
result = XtX @ w # Matrix-vector product
Gradient descent uses operations like these:
Xw = X @ w # Need O(p) memory
result = X.T @ Xw # Another O(p) operation

Both compute , but gradient descent:

Never forms the matrix

Uses operations (same as first approach)

Only needs extra memory for vectors

(X X)w⊤

p × p

O(np)

O(p)

7 / 28

A Memory-Efficient Alternative

Gradient descent with matrix-vector products
w = torch.zeros(p) # Initial guess
for k in range(max_iters):
 Xw = X @ w # Forward pass: O(np)
 grad = X.T @ (Xw - y) # Backward pass: O(np)
 w -= step_size * grad # Update: O(p)

The memory efficiency comes from iteratively updating our solution:

1. Start with an initial guess (even all zeros)
2. Compute the gradient using matrix-vector products
3. Take a small step in that direction
4. Repeat until convergence

8 / 28

The Algorithm

Our experiments with random matrices reveal a fascinating pattern:

9 / 28

Convergence Behavior: The Pattern

Linear Convergence

Error decreases exponentially, appearing as a straight line on log scale. This
predictable rate of improvement lets us estimate progress.

Precision vs Time

Each doubling of iterations improves precision by ~ . This consistent behavior lets
us plan computational resources.

Practical Impact

20 iterations: ~ relative error

40 iterations: ~ relative error
60 iterations: ~ relative error

104

10−5

10−9

10−13 10 / 28

Convergence Behavior: Key Insights

Compute direction of steepest descent (how to compute?)
Move in that direction (how far?)
Repeat until convergence (how to measure?)

We'll answer these questions today.

11 / 28

How to think about gradient descent

Our objective measures squared prediction error:

f(w) = ​ ∥Xw −
2
1

y∥ ​ =2
2

​ (Xw −
2
1

y) (Xw −⊤ y)

Expanding reveals the quadratic structure:

f(w) = ​ (w X Xw −
2
1 ⊤ ⊤ 2y Xw +⊤ y y)⊤

Each term has meaning:

: size of predictions

: alignment with truth

: scale of target values

w X Xw =⊤ ⊤ ∥Xw∥2

2y Xw⊤

y y⊤

12 / 28

The Least Squares Landscape

The gradient has the form:

​ ​

​

∂w ​j

∂f

∇f(w)

= ​(x ​w − y ​)x ​

i=1

∑
n

i
⊤

i ij

= X (Xw − y) = X Xw − X y⊤ ⊤ ⊤

This tells us:

 is prediction error in output space

 projects error back to parameter space
Direction tells us how to adjust each parameter

Xw − y

X⊤

13 / 28

Computing the Gradient

For our quadratic function, we can compute the exact change:

​ ​

f(w + ϵv) = ​ ∥X(w + ϵv) − y∥ ​

2
1

2
2

= f(w) + ϵ(Xw − y) Xv + v X Xv⊤

2
ϵ2

⊤ ⊤

= f(w) + ϵ∇f(w) v + ​v X Xv⊤

2
ϵ2

⊤ ⊤

For small , the dominates .ϵ ϵ ϵ2

14 / 28

Finding the Direction of Steepest Descent

IDEA: At any point , we can approximate using its gradient:

f(w + ϵv) ≈ f(w) + ϵ∇f(w) v⊤

This so-called first-order approximation:

Determines initial rate of descent
Guides stepsize selection
Explains convergence behavior

w f

15 / 28

Linear Approximation

At any point , we want the direction that decreases the first order approximation of
 most rapidly:

minimize ∇f(w) v subject to ∥v∥ =⊤ 1

The solution is:

v ​ =⋆ − ​

∥∇f(w)∥
∇f(w)

Indeed, by Cauchy-Schwarz inequality:

∣∇f(w) v∣ ≤⊤ ∥∇f(w)∥∥v∥ = ∥∇f(w)∥

w v

f

16 / 28

The Optimization Problem

The Geometry of Steepest Descent

17 / 28

When , we've found a critical point:

Local Minimum: All directions curve upward
Local Maximum: All directions curve downward
Saddle Point: Some up, some down

For least squares: All critical points are global minima!

This is due to convexity -- a property we'll study later.

∇f(w) = 0

18 / 28

What if the Gradient is zero?

What if the Gradient is zero?

19 / 28

At each step:

1. Start at our current point

2. Compute the gradient

3. Move in the negative gradient direction:
4. Repeat until the gradient becomes small

Three key factors determine success:

Stepsize selection
Problem conditioning
Initial guess quality

w ​k

g ​ =k X Xw ​ −⊤
k X y⊤

w ​ =k+1 w ​ −k α ​g ​k k

20 / 28

The Algorithm: Overview

Gradient descent with matrix-vector products
w = torch.zeros(p) # Initial guess
for k in range(max_iters):
 Xw = X @ w # Forward pass: O(np)
 grad = X.T @ (Xw - y) # Backward pass: O(np)
 w -= step_size * grad # Update: O(p)

For least squares, starting at zero is reasonable:

Gives zero predictions - a natural baseline
Will eventually find minimum (thanks to convexity)
Good initial guess reduces iterations needed

21 / 28

The Algorithm: Implementation

Convergence is guaranteed when:

0 < α ​ <k ​

λ ​(X X)max
⊤

2

Why this bound?

Level sets become very narrow in some directions
Width determined by eigenvalues of
Too large a step overshoots the minimum

X X⊤

22 / 28

Stepsize Selection: The Theory

Stepsize Selection: The Geometry

23 / 28

Left: Effect of stepsize ()

Right: Effect of condition number (fixed stepsize)

κ = 10

24 / 28

Convergence Speed vs Condition Number

The path to the minimum depends on problem conditioning:

Well-Conditioned ()

Direct path to minimum
Fast, steady progress
Efficient use of computation

Poorly-Conditioned ()

Zigzag path to minimum
Slow overall progress
Many wasted steps

κ = 2

κ = 50

25 / 28

Effect of Condition Number: Analysis

Effect of Condition Number

26 / 28

Gradient descent also has limitations:

For large : Computing full gradient expensive

For large : Memory still scales with problem size
Poor conditioning: Slow convergence

Solutions we'll cover later:

1. Stochastic methods for large

2. Coordinate descent for large
3. Momentum and adaptive methods for conditioning

n

p

n

p

27 / 28

Limitations and Next Steps

1. Memory Wall: Direct methods fail for large problems
2. Gradient Descent: Memory-efficient iterative solution
3. Convergence: Linear rate with predictable behavior
4. Geometry: Follows steepest descent direction
5. Implementation: Simple, scalable algorithm
6. Limitations: Sets up need for advanced methods

Next lecture: problems beyond least squares.

28 / 28

Summary

