STAT 4830: Numerical optimization for data science and ML

Lecture 3: Linear Regression - Gradient Descent

Professor Damek Davis

28

The Memory Wall

Consider genomic prediction: 1000 patients, 100,000 genetic markers

 $n_samples = 1000$ n_markers = 100_000 memory_needed = (n_markers * n_markers * 8) / (1024**3) # in GB print(f"Memory needed for X^TX: {memory_needed:.1f} GB") # 80.0 GB

Just forming $X^{ op}X$ would exceed most workstations' memory!

Even Worse: Medical Imaging

MRI reconstruction with 256^3 voxels:

- Matrix size: $256^3 imes 256^3$
- Memory for $X^{ op}X$: 2.2 petabytes
- That's 0.2% of world's total data center storage in 2023!

These aren't edge cases - they're routine analysis tasks.

Why Direct Methods Fail

Direct methods solve normal equations $X^{ op}Xw = X^{ op}y$:

<pre># Direct method (fails</pre>	for large p)
XtX = X.T @ X	# Form p × p matrix
Xty = X.T @ y	# Form p × 1 vector
w = solve(XtX, Xty)	# Solve p × p system

Costs:

1. Forming $X^{ op}X$: $O(np^2)$ operations, $O(p^2)$ memory 2. Forming $X^{ op}y$: O(np) operations, O(p) memory 3. Solving system: $O(p^3)$ operations

Experimental Results: Memory Wall

Results on MacBook M1 Pro (64GB RAM):

Size (p)	Memory for X^TX	Time	Status
1,000	8MB	0.005s	Fast, fits
5,000	200MB	0.182s	Fits in RAM
20,000	3.2GB	5.209s	RAM stressed
50,000	20GB	FAILS	Out of memor

Memory becomes bottleneck before computation time!

in fast memory

Y

Experimental Results: Scaling Comparison (n = 199) Behavior

6 / 28 The pattern is clear: memory becomes the bottleneck long before computation time:

A Memory-Efficient Alternative

One memory-efficient alternative is gradient descent:

This forms a huge p × p matrix (bad) XtX = X.T @ X # Need O(p²) memory result = XtX @ w # Matrix-vector product *# Gradient descent uses operations like these:* # Need O(p) memory Xw = X @ wresult = X.T @ Xw # Another O(p) operation

Both compute $(X^{ op}X)w$, but gradient descent:

- Never forms the p imes p matrix
- Uses O(np) operations (same as first approach)
- Only needs O(p) extra memory for vectors

The Algorithm

```
# Gradient descent with matrix-vector products
w = torch_zeros(p)
                 # Initial guess
for k in range(max_iters):
   Xw = X @ w
                # Forward pass: O(np)
   grad = X.T @ (Xw - y) # Backward pass: O(np)
   w -= step_size * grad # Update: O(p)
```

The memory efficiency comes from iteratively updating our solution:

- 1. Start with an initial guess (even all zeros)
- 2. Compute the gradient using matrix-vector products
- 3. Take a small step in that direction
- 4. Repeat until convergence

Convergence Behavior: The Pattern

Our experiments with random matrices reveal a fascinating pattern:

Problem Size	
	n = 1,000
	p = 1,000 r = 10,000
	p = 10,000
	p = 30,000
	p = 50,000

Convergence Behavior: Key Insights Linear Convergence

Error decreases exponentially, appearing as a straight line on log scale. This predictable rate of improvement lets us estimate progress.

Precision vs Time

Each doubling of iterations improves precision by $\sim 10^4$. This consistent behavior lets us plan computational resources.

Practical Impact

- 20 iterations: ~ 10^{-5} relative error
- 40 iterations: ~ 10^{-9} relative error
- 60 iterations: ~ 10^{-13} relative error

How to think about gradient descent

- Compute direction of steepest descent (how to compute?)
- Move in that direction (how far?)
- Repeat until convergence (how to measure?)

We'll answer these questions today.

28

The Least Squares Landscape

Our objective measures squared prediction error:

$$f(w) = rac{1}{2} \|Xw - y\|_2^2 = rac{1}{2} (Xw - y)\|_2^2$$

Expanding reveals the quadratic structure:

$$f(w) = rac{1}{2} (w^ op X^ op Xw - 2y^ op X$$

Each term has meaning:

- $w^ op X^ op Xw = \|Xw\|^2$: size of predictions
- $2y^{ op}Xw$: alignment with truth
- $y^{\top}y$: scale of target values

$(x_{w} - y)$

$(w + y^{\top}y)$

Computing the Gradient

The gradient has the form:

$$egin{aligned} rac{\partial f}{\partial w_j} &= \sum_{i=1}^n (x_i^ op w - y_i) x_{ij} \
abla f(w) &= X^ op (Xw - y) = X^ op X^
optimized \end{aligned}$$

This tells us:

- Xw y is prediction error in output space
- $X^ op$ projects error back to parameter space
- Direction tells us how to adjust each parameter

Finding the Direction of Steepest Descent

For our quadratic function, we can compute the exact change:

$$egin{aligned} f(w+\epsilon v) &= rac{1}{2} \|X(w+\epsilon v)-y\|_2^2 \ &= f(w)+\epsilon (Xw-y)^ op Xv \ &= f(w)+\epsilon
abla f(w)^ op v+rac{\epsilon^2}{2} \end{aligned}$$

For small ϵ , the ϵ dominates ϵ^2 .

Linear Approximation

IDEA: At any point w, we can approximate f using its gradient: $f(w+\epsilon v)pprox f(w)+\epsilon
abla f(w)^{+}v$

This so-called **first-order approximation**:

- Determines initial rate of descent
- Guides stepsize selection
- Explains convergence behavior

The Optimization Problem

At any point w_i , we want the direction v that decreases the first order approximation of f most rapidly:

minimize $\nabla f(w)^\top v$ subject to ||v|| = 1

The solution is:

 $v_{\star} = -rac{
abla f(w)}{\|
abla f(w)\|}$

Indeed, by Cauchy-Schwarz inequality:

 $|
abla f(w)^ op v| \leq \|
abla f(w)\|\|v\| = \|
abla f(w)\|$

What if the Gradient is zero?

When $\nabla f(w) = 0$, we've found a critical point:

- Local Minimum: All directions curve upward
- Local Maximum: All directions curve downward
- Saddle Point: Some up, some down

For least squares: All critical points are global minima!

• This is due to **convexity** -- a property we'll study later.

What if the Gradient is zero?

w

The Algorithm: Overview

At each step:

1. Start at our current point w_k

2. Compute the gradient $g_k = X^{ op} X w_k - X^{ op} y$

- 3. Move in the negative gradient direction: $w_{k+1} = w_k \alpha_k g_k$
- 4. Repeat until the gradient becomes small

Three key factors determine success:

- Stepsize selection
- Problem conditioning
- Initial guess quality

The Algorithm: Implementation

For least squares, starting at zero is reasonable:

- Gives zero predictions a natural baseline
- Will eventually find minimum (thanks to convexity)
- Good initial guess reduces iterations needed

Stepsize Selection: The Theory

Convergence is guaranteed when:

Why this bound?

- Level sets become very narrow in some directions
- Width determined by eigenvalues of $X^ op X$
- Too large a step overshoots the minimum

Convergence Speed vs Condition Number

Left: Effect of stepsize ($\kappa=10$)

Right: Effect of condition number (fixed stepsize)

Effect of Condition Number: Analysis

The path to the minimum depends on problem conditioning:

Well-Conditioned ($\kappa = 2$)

- Direct path to minimum
- Fast, steady progress
- Efficient use of computation

Poorly-Conditioned ($\kappa = 50$)

- Zigzag path to minimum
- Slow overall progress
- Many wasted steps

Effect of Condition Number $\kappa = 2, \alpha = 0.1/\lambda \max$

Limitations and Next Steps

Gradient descent also has limitations:

- For large n: Computing full gradient expensive
- For large p: Memory still scales with problem size
- Poor conditioning: Slow convergence

Solutions we'll cover later:

- 1. Stochastic methods for large n
- 2. Coordinate descent for large p
- 3. Momentum and adaptive methods for conditioning

Summary

- 1. Memory Wall: Direct methods fail for large problems
- 2. Gradient Descent: Memory-efficient iterative solution
- 3. Convergence: Linear rate with predictable behavior
- 4. Geometry: Follows steepest descent direction
- 5. Implementation: Simple, scalable algorithm
- 6. Limitations: Sets up need for advanced methods

Next lecture: problems beyond least squares.

S