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1 Introduction

The subgradient method is a classical algorithm for mini-
mizing a nonsmooth Lipschitz continuous function ¢ on R
Starting from an initial iterate x, the method simply iterates
Tyl = Ty — Oy with vy € Op(x4). (1.1)
Here, the positive sequence {a };>0 is user specified and the
set dp(x) is the Clarke subdifferential, which is defined as

Op(x) = conv {Zlirgo Vo(x;):xz; — x, x; € dom(ch)}.
In classical circumstances, the subdifferential reduces to
more familiar objects. For example, when ¢ is C'-smooth
at x, the subdifferential dp(x) consists only of the gradient
V(z), while for convex functions, it reduces to the subdif-
ferential in the sense of convex analysis. It is precisely under
these two settings—smoothness and/or convexity—that the
subgradient method is most well-understood [32,33,42,43].

While smooth and convex problems encompass a vari-
ety of applications, problems lacking both qualities have re-
cently emerged in modern machine learning practice. In-
deed, industry-backed solvers, such as Google’s TensorFlow
and Facebook’s PyTorch, now routinely train nonsmooth
deep networks via (stochastic) subgradient methods, pow-
ering widespread empirical success. It is important to note,
however, that the subgradient method on general Lipschitz
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continuous functions may fail to find any critical point, due
to highly pathological examples which would never appear in
practice [19]. Consequently to make progress, it is essential
to restrict the problem class under consideration.

Inspired by the success of the subgradient method in appli-
cations, several recent works have revisited the foundations
of subgradient methods, identifying two amenable problem
classes: weakly convex and tame problems. The weakly con-
vex class is broad, capturing important tasks in (robust) sta-
tistical estimation. As we will survey in this article, the sub-
gradient method on weakly convex problems admits strong
iteration complexity guarantees. Though broad, the weakly
convex class does not capture modern nonsmooth neural net-
works. For this we turn to tame functions, a virtually exhaus-
tive class of non pathological functions, including all semi-
algebraic and semi-analytic functions. Though considerably
broader than the weakly convex class, available complexity
guarantees for tame functions are much weaker, and instead
existing work illuminates only asymptotic behavior.

The purpose of this article is to survey the subgradient
method for weakly convex and tame problems, illustrating
two elegant tools for analyzing subgradient dynamics:

1. The Moreau envelope as a Lyapunov function for weakly
convex problems.

2. The chain rule for tame functions and its role in guar-
anteeing convergence.

The first tool is elementary and has found wide applicabil-
ity. The second tool is based on a more nuanced machin-
ery, rooted in tame geometry [53,55,56], and applies more
broadly.

2 Weak Convexity and the Moreau Envelope

We begin with the following seemingly simple question:

How can one judge the performance of the subgradient
method for nonsmooth and nonconvex problems?

The reason this question is nontrivial is that the classical
literature exhibits a dichotomy between convex and smooth
settings. Namely, convex optimization algorithms are judged
by the rate at which they decrease the function value along
the iterates, while smooth optimization algorithms are in-
stead judged by the magnitude of the gradients. Neither
performance metric is appropriate for analyzing the sub-
gradient method on functions that are simultaneously nons-
mooth and nonconvex. Indeed, since the problem is noncon-
vex, the functional suboptimality gap, ¢(z:) —inf ¢ need not
tend to zero. Moreover, the nonsmooth stationarity mea-
sure, dist(0; 0p(x:)) may remain bounded away from zero
along the iterates even for convex problems, as the example
o(x) = |z| illustrates. While salvaging the first measure is
hopeless, the second measure can in some cases be salvaged if
we are willing to perturb slightly the point x; at which dy is
evaluated. The message of this section is that for weakly con-
vex problems, this may be done in a principled way through
implicit smoothing.

2.1 The weakly convex class

A function ¢ is called p-weakly convex if the perturbed func-
tion @ — ¢(z) 4+ 5[|z[|? is convex.! This function class is
broad and includes convex functions, smooth functions with
Lipschitz continuous gradient, and any function of the form
@ = hoc, with h convex and Lipschitz and ¢ a smooth
map with Lipschitz Jacobian. Classical literature highlights
the importance of weak convexity in optimization [48,49,51],
while recent advances in statistical learning and signal pro-
cessing have further reinvigorated the problem class. For
example, nonlinear least squares, phase retrieval [22,28,29],
graph synchronization [1, 6, 54], and robust principal com-
ponent analysis [15, 16] naturally lead to weakly convex
formulations—see Figure 1. We refer the reader to the pa-
pers [4,17,20] and the previous SIAM news article [24] for
detailed examples.
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(a) p(x) =E|(aTz)2 — (aT1)?| (phase retrieval)

2
(c) ¢(z) = ||lzzT — 11T |1 (robust PCA)

Figure 1: Examples of weakly convex functions and their use in
practice.

The class of weakly convex problem is amenable to analysis
precisely because it entails a simplification of the subdifferen-
tial. Specifically, p-weak convexity automatically guarantees
that subgradients provide quadratic under-estimators with

IWeakly convex functions also go by other names such as lower-C?,
uniformly prox-regular, t2-paraconvex, and semiconvex.
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point I := prox,, () satisfies
12~ ]| = AMIVor(@)],
e <o), (23)
g dist(0; 9p(#)) < [Veoa (@)l

Figure 2: Quadratic under-estimator of ¢(z) = |z — 1|.

uniform amplitude (see Figure 2):

PW) 2 pla) + wy—a) = Ly, (1)

for all z,y € R? and v € dp(x). This fact is crucial for
analyzing Algorithm (1.1), as we now discuss.

2.2 Complexity of Algorithm (1.1) for weakly
convex problems

It has been known since Nurminskii’s seminal work [46, 47]
that when ¢ is p-weakly convex, the subgradient method
generates an iterate sequence that subsequentially converges
to a stationary point of the problem. Nonetheless, the com-
plexity of the basic method and of its proximal extension has
remained elusive until the recent work [20]. What appeared
to be missing from prior work was a continuous measure of
stationarity to monitor, instead of the highly discontinuous
function x — dist(0; dp(x)). The strategy proposed in [20]
relies on the elementary observation: weakly convex prob-
lems naturally admit a continuous measure of stationarity
through implicit smoothing.

Setting the stage, for any A > 0 define the Moreau envelope
and the proximal map:

#a(x) := min {o() + 3xlly — =},

. 1
procs, (o) = argmin {(s) + g5l — ol |
Yy

Standard results [41] show that as long as A < p~1, the
envelope ¢y is C'-smooth with the gradient given by

Vor(r) = A"z — prox,,()). (2.2)
See Figure 3 for an illustration. This gradient Vi (z) is
closely related to the subdifferential of ¢ itself. Indeed, when
¢ is smooth, the norm ||V, (z)|| is proportional to the mag-
nitude of the true gradient |Vy(x)|. In the broader nons-
mooth setting, the norm of the gradient ||V, ()| has an
intuitive interpretation in terms of near-stationarity for the
target problem. Namely, the definition of the Moreau enve-
lope directly implies that for any point z € R¢, the proximal

In summary,

a small gradient ||V (x)| implies that  is near
some point & that is nearly stationary for (2.6).

Moreover, for any point x, one can in principle estimate &
to high precision by solving the strongly convex optimization
problem defining the proximal operator. For a longer discus-
sion of the near-stationarity concept, see [24] or [26, §4.1].

3
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(b) Approximate stationarity

Figure 3: An illustration of the Moreau envelope

The Moreau envelope not only provides a natural contin-
uous measure of stationarity for weakly convex problems,
it also serves as an approximate Lyapunov function for the
subgradient dynamics. Indeed, the key observation of [20] is
that Algorithm (1.1) can be interpreted as an approximate
descent method on the Moreau envelope:

(i) < oa(@r) — aver [V () |* + ofca, (2.4)

where c1,co are problem dependent constants and A < p~!

is an arbitrary parameter. Rearranging and summing imme-
diately yields a convergence rate:

Corollary 2.1. The subgradient method will find a point
satisfying |[Vox(x)| < € using O(e~*) subgradient evalua-
tions.

Thus, the gradient of the Moreau envelope tends to zero at
a controlled rate along the sequence produced by (1.1), even
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though the stationarity measure dist(0, 0p(z:)) may remain
bounded below for all t. At first glance, this is somewhat
surprising as neither the Moreau envelope nor the proximal
operator appear in Algorithm (1.1).

An intuitive explanation of why (2.4) holds is that the
subgradients of ¢ and the gradient V) are well-aligned:

—\p
2

(v, Vor(z)) > ! IVr(z)||? for all v € dp(z). (2.5)

This estimate follows quickly: setting & := prox,,(z) and
y:=& in (2.1) yields

p(3) > p(x) + (v,3 —x) — gII’i‘ — )2
. . A l—p
> (&) + (v,4 —2) + T’)Hx—xnz

Recalling the relationship (2.2) immediately yields (2.5).

2.3 Extensions

Stochastic Model-Based Methods. The highlighted
ideas generalize to a wide class of algorithms for stochastic
and regularized problems:

min ¢(z) := f(z) +r(z) where f(z)=E..p[f(z,2)].
(2.6)

Here, z encodes the population data, which is assumed to fol-
low some fixed but unknown probability distribution P. The
functions f and r play qualitatively different roles. Typically,
f(z, z) evaluates the loss of the decision rule parametrized
by x on a data point z. In contrast, the function r: R¢ —
R U {+00} models constraints on the parameters = or en-
courages = to have some low dimensional structure, such as
sparsity or low rank.

The article [20] analyzes generic algorithms that in each it-
eration ¢t draw a sample z; ~ P, approximate the loss f(x, z;)
with a local model f,,(y, z:), and perform the update:

. 1
s = angmin { 20 4700 + gl = ol 20)
Yy Qy
Crucially the models are assumed to be accurate in the fol-
lowing sense:

E:[fa(z,2)] = f(z) and Ez[fm(y,Z)}Sf(y)JrgHy*l’IIQ-

Under these two assumptions, the convergence guarantees
of the method (2.7) directly parallel that of the basic sub-
gradient method: the expected norm of the Moreau enve-
lope’s gradient tends to zero at the rate O(T~'/%). The
most important algorithms that fit into this framework are
the stochastic proximal gradient, clipped gradient,? proximal
point, and proximal-linear methods. Closely related works
include [27], which studies asymptotic convergence guaran-
tees, and [4,5], which provide intriguing theoretical justifi-
cations for using tighter models than linear when designing
algorithms.

2introduced in [5]

0.5

Figure 4: One-sided model: f(z) = |2 — 1|, fo.s(y) = |1.25 — 9|

Proximally smooth constraint sets. Weakly convex
functions have convex domains, and hence, cannot model
nonconvex constraint sets. This is an important issue: one
is often interested in optimizing nonsmooth functions—even
those that are convex—over nonconvex sets, for example,
over embedded submanifolds or over sets cut out by noncon-
vex functional constraints [2,57]. The work [23] generalized
Algorithm (2.7) to functions ¢ whose domains are prozimally
smooth sets [18]—a broad class that includes closed convex
sets, sublevel sets of weakly convex functions, and compact
C?-submanifolds of R¢.?

The Algorithms developed in [23] draw on core techniques
of manifold optimization [3] and nonlinear programming [44].
Namely, letting X denote a proximally smooth constraint set,
incorporated in (2.6) as r(z) = dx, the method replaces (2.7)
with two simpler steps: the first optimizes the model function
over a local approximation of X', while the second “retracts”
this iterate back to X. Somewhat surprisingly, under nat-
ural conditions, the algorithm continues to drive the expec-
tation of the Moreau envelope’s gradient to zero at the rate
of O(T~'/*). The concurrent and complementary work [37]
provides a systematic treatment of (stochastic) Riemannian
subgradient methods, while the work [40] treats weakly con-
vex minimization with weakly convex functional constraints.
Another line of work [38,39,50] extends the Moreau envelope
technique to minimax problems

min ®(x) := max o(z,
in () i= max p(z, )

where o(z,y) is weakly convex in x and concave in y and
Y is a convex set. The function ® is then weakly convex as
well, and therefore the Moreau envelope gradient |[V®y(z)||
remains a meaningful measure of stationarity. In this set-
ting, one cannot evaluate the inner maximization problem
in closed form, and instead (sub)gradient “descent-ascent”
algorithms have been developed. Surprisingly, the measure
[IV®x(x)| still tends to zero along the iterate sequence, at
the rate of O(T~1/%).

3Proximally smooth sets have appeared under a variety of names
in the literature, including sets with positive reach [31] and uniformly
prox-regular sets [48]. Proximal smoothness was systematically studied
in [18] with the view towards optimization theory, though the core
definition dates back to Federer [31].
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3 Subgradient methods beyond weak con-
vexity

As the previous sections have illustrated, the weakly convex
problem class is broadly applicable and yet allows for the de-
sign and analysis of efficient algorithms. There are however
many simple functions that are not weakly convex, such as
p(a,y) = (2| — ly)? and @(@) = (1 — max{z,0})%. It is
not only toy examples, however, that are not weakly convex,
but the entire class of deep neural networks with nonsmooth
activation functions (e.g., ReLU). Let us look at two con-
crete examples of non-weakly convex functions that play an
important role in applications.

Example 3.1 (Max-affine regression). Consider the regres-
sion model

y = max ((aj,) +b;) + e
where y is a univariate response, € R is a vector of co-
variates, and € is a noise vector. The problem of max-affine
regression is to estimate the parameters {(a;,b;)}*_, from
independent observations (x1,41), ..., (s, yn). Finding the
maximum likelihood estimator amounts to solving the prob-
lem

((Il?}gl) n Zh <1rgja§k (a5, 2) +b;) _3/1) ,

where the loss h is determined by the distribution of the
noise €. It is straightforward to see that this problem is not
weakly convex in general.

Example 3.2 (Deep networks). Let (x1,91),...,(n,yn) be
a set of data points in R? x R. A deep neural network loss
o(w;x;,y;) corresponding to a data point (x;,y;) is defined
recursively as:

Qg :J?j,
a; = Pz(Vz(w)az—l) Vi = 17' o 7L7
@(TU;l'j,yj) :Z(yjaaL)7

where V;(-) are linear maps into the space of matrices, £(;-)
is any loss function, and p; are any activation functions ap-
plied coordinate wise. Typical examples of losses are the lo-
gistic £(y; z) = log(1 4 e~¥#), hinge ¢(y; z) = max{0,1 —yz},
absolute deviation £(y;z) = |y — z|, and the square loss
Uy;z) = %(y — 2)2. Typical activation functions are logt,
exp(t), max(0,t), or log(1 + e*). The task of training a deep
network then amounts to the optimization problem

1y
min 5290(@0;%'7%). (3.1)

j=1
Whenever the activation functions p; are nonsmooth—the
typical setting in practice—the optimization problem (3.1)
is not weakly convex.

The approach we follow in this section is based on a con-
tinuous time perspective explored in the paper [21], and is

orthogonal to the seminal work of Norkin [45].* The pa-
per [45] introduced a class of functions called generalized
differentiable, which subsumes Examples 3.1 and 3.2, and
proved convergence of the subgradient method for such func-
tions under an additional Sard-type assumption. The lat-
ter assumption holds automatically for Whitney-stratifiable
functions, which we discuss in this section.

3.1 A path through continuous time

As we have seen, the Moreau envelope of a weakly convex
problem serves as an approximate Lyapunov function for the
subgradient method. This is no longer the case outside of
the weakly convex setting. An alternative and appealing
approach to understanding the asymptotic behavior of the
subgradient method is to pass to continuous time where a
Lyapunov function may be more apparent. For the sake of
simplicity, we only focus on the deterministic subgradient
method; all results mentioned here (Section 3) extend to the
stochastic setting.

To formally describe the passage to continuous time, let
us abstract away from optimization and instead consider the
task of solving the inclusion

0 € G(z). (3.2)
for a set-valued map G: R = R%. Assume throughout that
G is locally bounded, convex-valued, and has a closed graph.
The reader should keep in mind the most important example
G = —0y, where @ is a locally Lipschitz continuous function.
In this case, the solutions of (3.2) are precisely the critical
points of .

The main strategy now for studying the long-term behav-
ior of the discrete process

Tpe1 =Tk +ogyr  with gy, € G(ag). (3.3)
is to link its behavior with absolutely continuous solutions
z: Ry — R? of the differential inclusion

(1) € G((1))

To formalize this viewpoint, we follow the seminal work of [7]
and the monograph [12]. Define the time points to = 0 and

Zk | ag, for m > 1. Let x(-) now be the linear
mterpolatlon of the discrete path:

for a.e. t > 0. (3.4)

A (xk+1 —{Ek) for t € [tk7tk+1). (35)

Since we are interested in the asymptotic behavior of tra-
jectories, for each time 7 > 0 define the time-shifted curve
27 (-) = z(7 + -); see Figure 5b for an illustration.

The following theorem shows that under mild assump-
tions, the curves 27 (-) approximate trajectories of the differ-
ential inclusion (3.4) within the space of continuous curves
C(Ry,R?), equipped with the topology of uniform conver-
gence on compact sets.

“4see also the review article [30].
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(a) Subrgadient curve 2(t) € —9p(z(t)).

(b) Time-shifted curves

Figure 5: Dynamics in continuous time

Theorem 3.1 (Functional approximation [7,12]). Suppose
that the iterates x; are bounded and that the sequence oy, > 0
satisfies Zle ay = oo. Then for any sequence {1}72, C
R, the set of functions {x™(-)} is relatively compact in
C(Ry,RY). If in addition 7, — oo as k — oo, all limit
points z(+) of {z™(-)} in C(Ry,R?) are trajectories of the
differential inclusion (3.4).

Henceforth, in light of the theorem, we always assume that
the sequence ay, satisfies Y- | ax = 0.

Recall that the ultimate goal is to find conditions guar-
anteeing that every limit point Z of the sequence {x}, pro-
duced by the recursion (3.3), satisfies the desired inclusion
(3.2). Making such a leap rigorous typically relies on com-
bining the asymptotic convergence guarantee of Theorem 3.1
with existence of a Lyapunov-like function £(-) for the con-
tinuous dynamics. Let us therefore introduce the following
assumption.

Assumption A (Lyapunov condition). There exists a con-
tinuous function £L: R? — R, which is bounded from below,
and satisfies the following two properties.

1. (Weak Sard) For a dense set of values r € R, the
intersection L~(r) N G=1(0) is empty.

2. (Descent) Whenever z: R, — R% is a trajectory of the
differential inclusion (3.4) and 0 ¢ G(z(0)), there exists
a real T > 0 satisfying

L(z(T)) < sup L(z(t)) < ¢(2(0)).
t€[0,T]

The weak Sard property is reminiscent of the celebrated
Sard’s theorem in real analysis. Indeed, consider the classical
setting G = —V for a smooth function p: R* — R. Then
the weak Sard property stipulates that the set of noncritical
values of ¢ is dense in R. By Sard’s theorem, this is indeed
the case, as long as ¢ is C¢ smooth. Indeed, Sard’s theorem
guarantees the much stronger property that the set of non-
critical values has full measure. The descent property says
that £ eventually strictly decreases along the trajectories of
the differential inclusion 2(t) € G(z(t)) emanating from any
non-equilibrium point.

Theorem 3.2 ( [7]). Suppose that Assumption A holds.
Then every limit point of {xy}r>1 lies in G=1(0) and the
function values {L(zk)}x>1 converge.

3.2 The chain rule along paths

In summary, the asymptotic behavior of the subgradient
method can be understood by passing to continuous time
if one can verify Assumption A for the set-valued map
G = —0p. With this in mind, a natural candidate for the
Lyapunov function is ¢ itself. Let us put aside for the mo-
ment the weak Sard property and focus on the descent prop-
erty. To this end, we introduce the following intuitive suffi-
cient condition.

Definition 3.3 (Chain rule). Consider a locally Lipschitz
function ¢ on R?. We will say that ¢ admits a chain rule if
for any absolutely continuous curve z: R, — R?, equality

(po2)'(t) = (0p(2(1)), £())

Functions that admit a chain rule automatically satisfy the
descent property.

holds for a.e. t > 0.

Theorem 3.4 ( [21,25]). Consider a locally Lipschitz func-
tion p: RY — R that admits a chain rule. Then L = ¢ satis-
fies the descent property (Assumption A(2)) with G = —0p.

Convex functions, and more generally those that are “sub-
differentially regular”, are well-known to admit the chain
rule. The two problems outlined in Examples 3.1 and 3.2
however do not fall into these classes. Nonetheless, they do
satisfy the chain rule but for a very different reason, which
we explain next.

3.3 Stratifiable functions

In this section, we focus on a broad class of functions—
virtually exhaustive in applications—that satisfy a chain
rule. Roughly speaking, we will call a function Whitney CP?-
stratifiable if its graph can be decomposed into CP-smooth
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manifolds that fit together in a regular pattern. As an illus-
tration, Figure 6 exhibits such a decomposition of a set in
R3. A formal definition of Whitney CP-stratifiable can be
found in [9,21], for example.

Semi-algebraic functions comprise the most important
subclass of Whitney CP-stratifiable functions for any fi-
nite p. More generally, functions definable in an o-minimal
structure—a far-reaching axiomatization of semi-algebraicity
[56]—are Whitney CP-stratifiable. Most importantly, nons-
mooth deep neural networks (Example 3.2) built from defin-
able losses £(-, a) and definable activation functions p;—such
as ReL U, quadratics t2, hinge losses max{0,t}, and SoftPlus
log(1 + €') functions—are themselves definable. Therefore
convergence guarantees for the subgradient method on Whit-
ney stratifiable functions directly translate to definable deep
networks.

Figure 6: Whitney umbrella (x2 = zy2) decomposed into strata:
origin, positive z-axis, negative z-axis, and their complement.

The following theorem shows that Whitney stratifiable
functions automatically admit the chain rule and moreover
satisfy the weak Sard property of Assumption A. The Sard
result was proved in [9], while the chain rule was established
in [21,25] using the projection formula of [9]. It is worth-
while to mention that Sard type result holds more generally
for any set-valued map with a stratifiable graph; see the orig-
inal work [35] or the monograph [36, §8.4].

Theorem 3.5 (Chain rule and Sard). Any locally Lipschitz
function ¢: R* — R that is Whitney CP-stratifiable admits
a chain rule. Moreover, the set of critical values of ¢ has
zero measure, as long as p > d. Therefore, in this case,
Assumption A holds for G = —0¢.

Putting Theorems 3.2, 3.4, and 3.5 together immediately
yields the following.

Corollary 3.6. Let p: R? — R be a locally Lipschitz func-
tion that is C¢-stratifiable. Suppose that the iterates {z }x>1
produced by (3.3) are bounded and suppose that Assump-
tion A holds with G = —0¢. Then every limit point of
the iterates {xy}r>1 is critical for ¢ and the function val-
ues {¢(x)}k>1 converge.

3.4 Further results

Chain rule, conservative maps, and automatic differ-
entiation. The continuous time perspective heavily relied
on the validity of the chain rule (Definition 3.3) for the sub-
differential of stratifiable functions. In essense, this was the
only important property of the Clarke subdifferential used.
Indeed, the authors of [10] show that the chain rule can be
used to define generalized differentiation. Namely, call a set-
valued map D, a conservative subdifferential of ¢ if it satis-
fies the mean value theorem in integral form

1
e(v(1)) = ¢(7(0)) :/0 (D ((1)),¥(t)) dt

for any absolutely continuous curve v: [0,1] — R%. Conser-
vative subdifferentials are systematically studied in [10]. Im-
portantly, conservative subdifferentials satisfy an ezact cal-
culus, which is in sharp contrast to the Clarke subdifferen-
tial. In particular, it is immediate from the definition that
D¢ + Dy is a conservative subdifferential of f + g.

The most important example of conservative subdiffer-
entials arises from the Automatic differentiation technique
commonly used in deep learning. To motivate the discus-
sion, recall that implementation of the subgradient method
requires a mechanism to efficiently compute a Clarke sub-
gradient y; € Op(x;). There are instances when this is not
entirely justified. For example, when training deep neural
networks, computing a subgradient amounts to subdifferen-
tiating a long composition of functions ¢ = fi o foo...0 fr.
The way this is done in practice is by appealing to automatic
differentiation techniques, which implicitly compute an up-
date direction from the subdifferentials 0f; by “formally”
applying a chain rule, as if the function f; were differen-
tiable. Herein lies a conceptual disconnect between theory
and practice because the subdifferential of nonsmooth func-
tions in general does not satisfy formal chain or sum rules
with equality. Nonetheless, the authors of [10,11] prove that
the update direction defined in this way furnishes a conser-
vative subdifferential and therefore the following is true.

Theorem 3.7 (Informal). Consider a function ¢ = fi0 fyo
...ofr, where each f;: RT — R is locally Lipschitz continuous
and admits a chain rule. Let G: R® = R be a set-valued map
defined by formally applying the chain rule of subdifferentials
to the decomposition of . Fiz a sequence o; > 0 satisfying
Yooy a; =00 and consider the iterates:

Ti41 = Tt — O4Yt where y; € G(xy).

Then as long as the sequence {x;} is bounded, each of its
limit points x satisfies the inclusion 0 € G(x).

An unsatisfactory aspect of Theorem 3.7 is that in princi-
ple a subgradient method implemented using automatic dif-
ferentiation can generate points that are not Clarke critical.
Seeking to avoid such pathologies, the authors of [10,11] show
remarkably that for a large class of deep neural networks, as
long as the initialization and the step-sizes are sufficiently
random, every limit point of the method will be Clarke crit-
ical. A parallel approach appears in [8].
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Theorem 3.8 (Informal). Consider applying the stochastic
gradient method implemented through automatic differentia-
tion, with stepsizes chosen as a; = ¢y, where ¢ € (0,1) and
v = O(1/1og(t)). Then for a virtually exhaustive class of
activation functions (see [11] for a formal definition), for
almost every c € (0,1) and almost all xo € RY, the stochas-
tic subgradient method produces limit point x that satisfy the
inclusion 0 € Op(z) almost surely.

Finite time guarantees. The passage to continuous time
provides an attractive framework for understanding the
asymptotic behavior of subgradient methods. The disad-
vantage of this approach is that it does not yield insight into
finite time guarantees. The recent work [58] establishes finite
time guarantees for a modified subgradient method, which is
closely related to the descent method of Goldstein [34] and
the gradient sampling algorithm of Burke, Lewis, and Over-
ton [14]. The main construction that used is the Goldstein
subdifferential introduced in [34].

Definition 3.9 (Goldstein subdifferential). Consider a lo-
cally Lipschitz function ¢: R? — R, a point € R?, and a
parameter § > 0. The Goldstein subdifferential of ¢ at z is

the set
Os(z) = conv ( U &p(x)).

x€Bs(x)

Thus the Goldstein subdifferential of ¢ at x is simply the
convex hull of the union of all Clarke subgradients at points
in a d-ball around z. Famously, Goldstein [34] showed that
one can significantly decrease the value of ¢ by taking a
step in the direction of the minimal norm element of ds¢(x).
Throughout the rest of the section, we fix § € (0,1).

Theorem 3.10 (Uniform decrease). Fiz a point x and let
g be a minimal norm element of ds(x). Then as long as
g # 0, the estimate holds:

5L 2) = 68llgll.
w(w aHgH)w() gl

Theorem 3.10 immediately motivates a conceptual descent
algorithm, which repeats:

where g+ = argmin ||g||. (3.6)

gt
Ti4+1 = Tt — 6——
llg¢ll 9€d50(x)

Theorem 3.10 trivially guarantees that the stationarity con-
dition min,—; 7 ||g¢|| < € holds after

T—0 (gp(:co) — ming
de

> iterations.

Since evaluating the minimal norm element of ds¢(z) is im-
possible in general, the descent method cannot be applied
directly. Nonetheless it does serve as a guiding principle for
implementable algorithms. Notably, the gradient sampling
algorithm [14] in each iteration forms polyhedral approxima-
tions Ky of 05 (z:) by sampling gradients in the ball Bs(z)
and computes search directions g; € argminge ., [|gl|. The

number of gradient computations required by gradient sam-
pling algorithms, however, scales linearly with the dimension
of the ambient space; see [13].

The recent paper [58] shows, remarkably, that for any x €
R¢ one can find an approximate minimal norm element of
Osp(z) using a number of subgradients that is independent
of the dimension.® As a consequence the following is true.

Theorem 3.11 (Informal). Let ¢ be a Lipschitz continuous
and directionally differentiable function and set A = (xg) —
min . There exists an algorithm that with probability 1 — v
will find a point x satisfying dist(0, ds(x)) < € using at most
o (5510 (5))

It is natural to ask whether for general Lipschitz functions
one may efficiently find some point z for which there ex-
ists y € Bs(x) satisfying dist(0, 9p(y)) < e. This is a much
stronger requirement than dist(0,dsp(z)) < €, and was ex-
actly the guarantee of subgradient methods on weakly con-
vex functions in Corollary 2.1. The paper [52] shows that
for general Lipschitz continuous functions, the number of
subgradient computations required to achieve this goal by
any algorithm must scale with the dimension of the ambient
space.

subgradient evaluations.

4 Conclusion

The subgradient method has long been a useful algorithm
for minimizing nonsmooth functions, and is gaining renewed
prominence due to large-scale applications in machine learn-
ing. It is therefore crucial to determine whether and when
the subgradient method possesses theoretical guarantees.
In this work we outlined two broad problem classes, both
amenable to theoretical analysis: weakly convex and tame
problems. For weakly convex functions, the subgradient
method satisfies strong complexity guarantees: the gradi-
ent of the Moreau envelope of the loss function tends to zero
at a controlled rate. For tame problems, the situation is
much more subtle: while asymptotic guarantees hold, avail-
able complexity guarantees are much weaker. An intriguing
open question is whether such complexity guarantees can be
strengthened.
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Email items to siagoptnews@lists.mcs.anl.gov for con-
sideration in the bulletin of forthcoming issues.

1 Event Announcements

1.1 SIAM Conference on Optimization

Siam.
2920

Although originally scheduled for May 26-29 in Hong Kong,
because of the coviD-19 pandemic SIOPT has been moved
to 2021. It will be held in July 20-23 in Spokane, Wash-
ington, USA, jointly with four other meetings: the SIAM
Annual Meeting (AN21); the SIAM Conference on Ap-
plied and Computational Discrete Algorithms (ACDA21);
the SIAM Conference on Control and Its Applications
(CT21); and the STAM Conference on Discrete Mathematics
(DM21). More information at www.siam.org/conferences/
cm/conference/op21.

1.2 TPCO
The 22nd Conference on Integer Programming and Combi-
natorial Optimization (IPCO XXII) will take place on 19-21
May, 2021, at the Georgia Institute of Technology, Atlanta,
Georgia, USA. It will be preceded by a Summer School, to
be held on 17 and 18 May.

For details visit https://sites.gatech.edu/ipco-2021.

1.3 IFORS

os&u{,‘,‘b

7@ IFORS 2020

- g
"u’% P The 22™ Conference of
Higgs wrt- the: Internatienal Federation of Operational Research Secieties

The 22nd Conference of the International Federation of
Operational Research Societies (IFORS 2021) will take place
22-27 August 2021 at Hanyang University, Seoul, South Ko-
rea. It was originally scheduled for 2020 but was also moved
to 2021 due to the pandemic.

See http://www.ifors2020.kr for more information.

1.4 MOPTA

The MOPTA 2021 conference will be held at Lehigh Uni-
versity, 2-4 August 2021. MOPTA aims at bringing together

a diverse group of people from both discrete and continuous
optimization, working on both theoretical and applied as-
pects. There will be a small number of invited talks from dis-
tinguished speakers and contributed talks, spread over three
days.

For details visit http://coral.ie.lehigh.edu/~mopta

2 Books

2.1 Practical Optimization

Practical
Optimization

By Philip E. Gill, Walter Murray, and
Margaret H. Wright

Publisher: STAM

ISBN: 978-1-611975-59-8

Published: 2019

https: // epubs. stam. orqg/doi/book/ 10.
1137/1. 9781611975604

ABOUT THE BOOK:

In the intervening years since this book was published in
1981, the field of optimization has been exceptionally lively.
This fertility has involved not only progress in theory, but
also faster numerical algorithms and extensions into unex-
pected or previously unknown areas such as semidefinite pro-
gramming. Despite these changes, many of the important
principles and much of the intuition can be found in this
Classics version of Practical Optimization.

This book

e provides model algorithms and pseudocode, useful tools
for users who prefer to write their own code as well as
for those who want to understand externally provided
code;

e presents algorithms in a step-by-step format, revealing
the overall structure of the underlying procedures and
thereby allowing a high-level perspective on the funda-
mental differences; and

e contains a wealth of techniques and strategies that are
well suited for optimization in the twenty-first century
and particularly in the now-flourishing fields of data sci-
ence, “big data,” and machine learning.

AUDIENCE: Practical Optimization is appropriate for ad-
vanced undergraduates, graduate students, and researchers
interested in methods for solving optimization problems.

3 Other Announcements

3.1 Martin Grotschel

Martin Grotschel has been awarded the Cantor Medal, the
highest scientific award of the German Mathematicians’ As-
sociation (DMV), for 2021. Congratulations Martin!

3.2 Arkadi Nemirovski

Arkadi Nemirovski has been elected as member of the United
States’ National Academy of Sciences for his contributions to
continuous optimization. Congratulations Arkadi!
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Chair’s Column

Katya Scheinberg, STAG/OPT Chair

Cornell University, Ithaca, NY 18015-1582, USA
katyas@cornell.edu
https:/www.orie.cornell.edu/faculty-directory/
katya-scheinberg

It is my privilege to write this column for the first time
as the new Chair of SIAM Activity Group on Optimization.
The new team stepped in on January 1st of 2020 and in
addition to myself includes Sam Burer as the Vice Chair, Jeff
Linderoth as the Program Director and Stefan Wild as the
Secretary. We feel very honored to have been elected to lead
our STAG but also downhearted because of the effect which
Covid-19 has had on our community and in particular on
the postponement and relocation of our flagship conference
(OP 20) which was to be held in Hong Kong last Spring. We
hoped to see many of you there during talks, social events
and SIAG business meeting.

Tamas Terlaky and Defeng Sun who are organizing com-
mittee co-Chairs of the OP 20 conference have been hard
at work since the end of 2019 trying to find the best solu-
tion for the STAM on Optimization conference. Defeng and
the organizing committee have put in a huge effort towards
ensuring a successful and safe conference in Hong Kong, how-
ever, the new reality set on the whole world and plans had
to be changed. We very much hope to rely on the hospitality
and organizational skills of the Hong Kong team again in the
near future.

After many deliberations it has been decided that the next
instantiation of the OP 20 conference is to be moved and to
be collocated with the STAM Annual meeting. Now named
OP 21, the conference is scheduled to be held in Spokane,
Washington July 20-23rd 2021. Many of you have seen the
call for minisymposium proposals and abstract submissions.
We hope to have a successful and vibrant conference in what-
ever form will be feasible in July. The conference website
includes information about the possible modes of the confer-
ence and related logistical details.

I would now like to take the opportunity to thank Tama&s
Terlaky (Chair) and the previous team of officers, Andreas
Wiéchter (Vice Chair), Michael Friedlander (Program Direc-
tor) and Jim Luedtke (Secretary) for their effective and tire-
less leadership over the past three years. Under their leader-
ship the STAG has flourished considerably gaining many new
members. A new Early Career Prize has been established
and awarded for the first time this year. While the SIAM
Conference on Optimization has been postponed, the SIAG
prizes have been awarded without delay. The winners of the
STAG/Optimization Best Paper Prize are Hamza Fawzi (U.
of Cambridge), James Saunderson (Monash University), and
Pablo Parrilo (MIT) for their paper “Semidefinite Approxi-
mations of the Matrix Logarithm.” And the winner of the
new Early Career Prize is John Duchi (Stanford University).
Congratulations to the winners!

I wish you and your loved ones to stay healthy and pro-
ductive during these difficult times and I hope we will all be
seeing each other in person soon. Happy New Year.

Comments from the
Editors

This edition of STAG/OPT Views and News came a bit late
in a year that was eventful for all of us. We have a great con-
tribution by Damek Davis and Dmitriy Drusvyatskiy, show-
ing us the strength of the subgradient method for two classes
of optimization problems: weakly convex problems and tame
problems. We hope you enjoy the reading and remind you
that all volumes of Views and News are available at the on-
line archive: http://wiki.siam.org/siag-op/index.php/
View_and_News.

As always, the editors welcome your feedback at
siagoptnews@lists.mcs.anl.gov. Suggestions for new is-
sues, comments, and papers are always welcome.

Pietro Belotti, Editor
DEIB, Politecnico di Milano,
pietro.belotti@polimi.it

and FICO Xpress team,

Somayeh Moazeni, Editor
School of Business, Stevens Institute of Technology,
smoazeni@stevens. edu, http://web.stevens.edu/
facultyprofile/?id=2041



katyas@cornell.edu
https:/www.orie.cornell.edu/faculty-directory/katya-scheinberg
https:/www.orie.cornell.edu/faculty-directory/katya-scheinberg
http://wiki.siam.org/siag-op/index.php/View_and_News
http://wiki.siam.org/siag-op/index.php/View_and_News
siagoptnews@lists.mcs.anl.gov
pietro.belotti@polimi.it
smoazeni@stevens.edu
http://web.stevens.edu/facultyprofile/?id=2041
http://web.stevens.edu/facultyprofile/?id=2041

	article1
	Introduction
	Weak Convexity and the Moreau Envelope
	The weakly convex class
	Complexity of Algorithm (1.1) for weakly convex problems
	Extensions

	Subgradient methods beyond weak convexity
	A path through continuous time
	The chain rule along paths
	Stratifiable functions
	Further results

	Conclusion

	Bulletin
	Event Announcements
	SIAM Conference on Optimization
	IPCO
	IFORS
	MOPTA

	Books
	Practical Optimization

	Other Announcements
	Martin Grötschel
	Arkadi Nemirovski


	Chair
	Editor

