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Why care?
= Stochastic (sub)gradient method is standard option in industry backed
solvers (Tensorflow, Pytorch).

= Key data science tasks are nonsmooth and nonconvex (ReLU deep

networks).

Many have contributed.

= Belenkiy, Bertsekas, Burke, Demyanov, Duchi, Ermoliev, Gaivoronski,
Goffin, Gupal, Juditsky, Kiwiel, Lan, Lemaréchal, Lewis, Mifflin,
Mikhalevich, Nemirovski, Nesterov, Norkin, Nurminskii, Overton, Polyak,

Pshenichny, Rubinov, Rucinski, Sagastizabal, Shapiro, Shor, Uryasev....
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Problem. Minimize locally Lipschitz function

min f(z).
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Problem. Minimize locally Lipschitz function

min f(z).

z€RI

Example Algorithm:

= Subgradient method

Choose yi. € Of (zk)

Tk+1 = Tk — QkYk-

where 0f denotes Clarke subdifferential:

of(z) = conv{ lim Vf(z;):2; - x in dom(Vf)}.

T;—T
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Problem Class and Algorithms Il
Problem.

min o(z) = f(z) + g(z)

TEX

Example Algorithms:

= Proximal subgradient method

Choose y. € Of (zx)

Tpr1 € argmin f(z1) + (e, © — 21) + g(x) + 50— ||z — @x|*.
reEX

= Clipped proximal subgradient method if f > 0 (Duchi-Ruan '18)

Choose yi € Of (k)

Tyr1 € argmin [f(z1) + (e, © — 21)] " + g(2) + g [lz — @ *.
rzeX
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Problem Class and Algorithms Il

Problem.

min ¢(z) :=E.vp[f(z, 2)] + g(x)

zeEX

Example Algorithms:

= Stochastic proximal point

Sample z; ~ P

ZTp41 € argmin f(x, zx) + g(x) +
TEX

200k

[EREA
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Problem Class and Algorithms Il

Problem.
min ¢(z) = E.p [f(z, 2)] + g(z)

zeEX

Example Algorithms:

= Stochastic proximal point

Sample z; ~ P

. 1
P Cargmin f(r,20) + g(x) + ol — el
reX oL

= And stochastic variants of previous algorithms....
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» ¢ smooth = (xx) almost decreasing (Ghadimi-Lan '13)
» o weakly convex == Moreau envelope
o (x) = inf {o) + 2y — =}

almost decreasing (D-Drusvyatskiy '18)

3
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» ¢ smooth = (xx) almost decreasing (Ghadimi-Lan '13)
» o weakly convex == Moreau envelope
o (x) = inf {o) + 2y — =}

almost decreasing (D-Drusvyatskiy '18)

3

@ =1
25 - Lpg,4(.’l;) 4
©o2(z)

0

Challenge: No clear Lyapunov function in general.
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The Differential Inclusion Approach

Define: Composite Gradient
G(2) i= (=) + 09(2) + Ne(2).
Two Ingredients in Search for Critical Point: 0 € G(z)

= Unifying Principle. Common algorithms are “discretizations” of trajectory
z: Ry — R of differential inclusion —2 € G(z)
= Lyapunov Assumption.
= Strict Descent. We force ¢ to be Lyapunov for dynamics.

{ —2€G(2) ae } = ¢(2(t)) < ¢(2(0)) VE>0

z(0) not critical.

= Weak Sard. The set of noncritical values is dense in R.

Thm: Lyapunov = every limit point ©* of {x\} is critical.

(Kushner-Yin '03, Benaim-Hofbauer-Sorin '05)
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Discretization |

Trt1 = Tk — o(Yi + Ek)- ‘

Assumptions:
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Assumptions:
L sup{|lzk |, [yx[} < oo as.
k>0

2. Step-size selection

o0
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k=1

3. Approximate evaluations
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Discretization |

‘xk+1 =Tk — Oék(yk Jrfk)' ‘

Assumptions:
L sup{|lzk |, [yx[} < oo as.
k>0

2. Step-size selection

o0 oo
2
ay > 0, E Q= 00, E ay < 00.
k=1 k=1

3. Approximate evaluations

n

1
Tk, =T e ;Zykj — G(z).

4. Noise sequence {{;} satisfies

(Kushner-Yin '03, Benaim-Hofbauer-Sorin '05, Duchi-Ruan '17)
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Time-shifted curve. o !
' () =z(r+ ). /
xh(t) R4
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/z
Time-shifted curve. o !
' () =z(r+ ). /
xh(t) R4
\. x5 e xT7

Thm: For any 7, — 0o, the set {z"*(-)} is compact in C(R4,R%), and all limit
points z(-) are arcs satisfying

—2(t) € G(2(t)) for a.e. t > 0.

(Kushner-Yin '03, Benaim-Hofbauer-Sorin '05, Duchi-Ruan '17)

Why Matter? If z;;, — 2", then a limiting arc begins at limit point.
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Strict Descent

When does ¢ strictly decrease along dynamics —z € G(z)?
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A Sufficient Condition for Strict Descent
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A Sufficient Condition for Strict Descent

Intuition. Dynamics “should” decrease Sufficient Condition. A chain rule:

® in proportion to square of “gradient.” for any arc z, we have for a.e. ¢

(po2)'(t) = (G(2(t)), £(t))

Lemma: Suppose ¢ admits a chain rule and an arc z(-) satisfies
—2(t) € G(2(t)) fora.e. t>0.

Then
1Z2(0) || = dist(0, G(2(1))) a.e.

and therefore

2(2(0)) — (=(t) = / dist? (0:G(=(r))) dr, Vi 0.
0

10

19



Problems that Admit Chain Rule

= Convex (Brézis '73, Bruck '75)

11/19



Problems that Admit Chain Rule

= Convex (Brézis '73, Bruck '75)

= Subdifferentially regular: any v € 9f(z) satisfies

fy) = f(@) + vy —a) +o(ly —zl)) asy—z

11/19



Problems that Admit Chain Rule

= Convex (Brézis '73, Bruck '75)

= Subdifferentially regular: any v € 9f(z) satisfies

fy) = f(@) + vy —a) +o(ly —zl)) asy—z

= Whitney stratifiable (D-Drusvyatskiy-Kakade-Lee '18)

11/19



Problems that Admit Chain Rule

= Convex (Brézis '73, Bruck '75)

= Subdifferentially regular: any v € 9f(z) satisfies

f) = f@)+ wy—a)+o(ly—zl) asy—a

= Whitney stratifiable (D-Drusvyatskiy-Kakade-Lee '18)

Informally: Graph decomposes into manifolds, fit together in reg. pattern.
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Whitney Stratifiable Functions are Ubiquitous

» Virtually exhaustive in optimization.

= Semianalytic functions: Any function with graph of the form

U{xGRd:pi,j(az)SO Vi=1,...,m}

ij=1

with real-analytic p; ;. (Lojasiewicz '65)

= Definable functions. Any function with graph definable in o-minimal
structure

= Polynomials, z1/7, A(X), max{0,t}, log(1 + e'), and their sums, products,

compositions are definable.

= Any deep network built from definable pieces.

(van den Dries-Miller '96,Ta L& Loi '97)
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Whitney Stratifiable Functions Admit Chain Rule

Intuition:
= Stratify. Domain of ¢ stratifies into manifolds M, ..., M, such that
go‘M is smooth.

i

= Local Chain Rule. On each manifold <p’M‘ admits chain rule.

= Glue Along Arc. Glue all chain rules along arc —2 € G(z) using “Whitney
condition” and projection formula of (Daniilidis-Bolte-Lewis-Shiota '07).
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For a stratifiable problem, a.s. all limit points 2™ of stochastic proximal

subgradient iterates {x\} are critical.
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Main Result

Thm: (D-Drusvyatskiy-Kakade-Lee '18)

For a stratifiable problem, a.s. all limit points 2™ of stochastic proximal
subgradient iterates {x\} are critical.

= Weak Sard from (Bolte-Daniilidis-Lewis-Shiota '07).
= Similar result and technique apply to “discretizations” of —z € G(z).
= Not true for general Lipschitz problems.

= The result is entirely geometric, independent of problem presentation.
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= Weakly Convex. projected stochastic subgradient (Nurminski '73, '74),
stochastic prox-linear (Duchi-Ruan '17).

= Semismooth/Generalized Differentiable. variants of projected stochastic
subgradient (Norkin '86 and Ermoliev-Norkin '98)

= Subdifferentially Regular. class of stochastic algorithms
(Majewski-Miasojedow-Moulines '18) (concurrent with our work)

» Strict descent holds for all above examples.

= Applications of Chain Rule to Deep Learning.
= (Du, Hu, Lee '18), (Castera-Bolte-Févotte-Pauwels '19), (Lyu-Li '19)
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Broader Perspectives for Nonsmooth Optimization in Data Science

Qualitative Guarantees? Stratifiable Functions.
Quantitative Guarantees? Weakly convex.
Prevalence? Wide.

) 1 2

(a) El(a"2)? = (aT1)?]  (b) lzy —1] (©  JazT —1174

(phase retrieval) (blind deconvolution) (robust PCA)
16 /19



Quantitative Guarantees and Consequences for Data Science
Weakly Convex Sublinear Rates of Moreau Envelope
(D-Drusvyatskiy '18)
E[[[Vea(e-)|l] = Ok

Key: Moreau (almost) Lyapunov
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Quantitative Guarantees and Consequences for Data Science

Weakly Convex
(D-Drusvyatskiy '18)

Sublinear Rates of Moreau Envelope
E [[|Vex(ze)]] = O(K*)

Key: Moreau (almost) Lyapunov

Weakly Convex + Sharp growth
o(z) — iI)l(f(p > u-dist(z, X™)

(D-Drusvyatskiy '18, '19)

Deterministic/Stochastic Linear Rates

dist(xx, X*) = O ((1 - f)k>

Key: geometrically decaying stepsize.
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Weakly Convex
(D-Drusvyatskiy '18)

Sublinear Rates of Moreau Envelope
E [[|Vex(ze)]] = O(K*)

Key: Moreau (almost) Lyapunov

Weakly Convex + Sharp growth
o(z) — iI)l(f(p > u-dist(z, X™)

(D-Drusvyatskiy '18, '19)

Deterministic/Stochastic Linear Rates

dist(xx, X*) = O ((1 - f)k>

Key: geometrically decaying stepsize.

In Practice

Robust phase retrieval, blind
deconvolution, low-rank matrix recovery
(Eldar-Mendelson '12) (Duchi-Ruan
'18) (Charisoplous-D-Diaz-Drusvyatskiy
'19) (Li, Zhu, So, Vidal '19)

Weakly Convex + Sharp Growth w.h.p.

Optimal guarantees with out-of-the-box

subgradient method

Ex. Phase Retrieval & Blind Deconv
cost O(md).
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Summary

Generic procedure for analyzing discretization schemes of —2 € G(z),

including stochastic proximal subgradient algorithm.
Convergence reduced to checking natural property of loss function.

Identified strict descent, Sard property, and chain rule as key to
convergence—automatic for stratifiable losses.
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Thanks!



