
Avoiding saddle points in nonsmooth optimization

Damek Davis
School of Operations Research and Information Engineering

Cornell University

Joint with L. Jiang (Cornell) and D. Drusvyatskiy (U. Washington)

One World Optimization Seminar
Nov 2021

0 / 25

Saddle point avoidance
Recent Realization:

Simple algorithms for minimizing C2 functions avoid all strict saddle
points, when randomly initialized.1

• Simple algorithms: Gradient descent (GD), coordinate descent....
• Strict saddle points: Critical points that have negative curvature.

1Lee-Simchowitz-Jordan-Recht ’16
1 / 25

Saddle point avoidance

Recent Realization:

Simple algorithms for minimizing C2 functions avoid all strict saddle
points, when randomly initialized.2

• Simple algorithms: Gradient descent (GD), coordinate descent....

• Strict saddle points: Critical points that have negative curvature.

Motivation:
For a wealth of estimation and learning problems, all spurious critical

points are strict saddles and therefore avoidable!

(Sun-Qu-Wright ’15-’18, Ge-Lee-Ma ’16, Bhojanapalli-Neyshabur-Srebro ’16, Ge-Jin-Zheng ’17. . .)

This talk:
Do first-order methods avoid “strict saddles” of nonsmooth functions?

2Lee-Simchowitz-Jordan-Recht ’16
2 / 25

Saddle point avoidance

Recent Realization:

Simple algorithms for minimizing C2 functions avoid all strict saddle
points, when randomly initialized.2

• Simple algorithms: Gradient descent (GD), coordinate descent....

• Strict saddle points: Critical points that have negative curvature.

Motivation:
For a wealth of estimation and learning problems, all spurious critical

points are strict saddles and therefore avoidable!

(Sun-Qu-Wright ’15-’18, Ge-Lee-Ma ’16, Bhojanapalli-Neyshabur-Srebro ’16, Ge-Jin-Zheng ’17. . .)

This talk:
Do first-order methods avoid “strict saddles” of nonsmooth functions?

2Lee-Simchowitz-Jordan-Recht ’16
2 / 25

Weak convexity: an amenable problem class

minimize
x∈Rd

F (x)

Running assumption: weak convexity

F (·) + ρ

2‖ · ‖
2 is convex.

Main example: (convex) ◦ (smooth)

h(c(x))

h is convex and L-Lipschitz; c is smooth with `-Lipschitz Jacobian (ρ = L`)
(Fletcher ’80, Powell ’83, Burke ’85, Wright ’90, Lewis-Wright ’08, Cartis-Gould-Toint ’11,. . .)

3 / 25

Weak convexity: an amenable problem class

minimize
x∈Rd

F (x)

Running assumption: weak convexity

F (·) + ρ

2‖ · ‖
2 is convex.

Main example: (convex) ◦ (smooth)

h(c(x))

h is convex and L-Lipschitz; c is smooth with `-Lipschitz Jacobian (ρ = L`)
(Fletcher ’80, Powell ’83, Burke ’85, Wright ’90, Lewis-Wright ’08, Cartis-Gould-Toint ’11,. . .)

3 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ rM = XXT X ∈ Rd×rmin
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ rM = XXT X ∈ Rd×rmin
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ r

M = XXT X ∈ Rd×rmin
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ r

M = XXT X ∈ Rd×r

min
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ rM = XXT X ∈ Rd×r

min
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ rM = XXT X ∈ Rd×r

min
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ rM = XXT X ∈ Rd×r

min
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ rM = XXT X ∈ Rd×r

min
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ rM = XXT X ∈ Rd×r

min
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.
3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13

4 / 25

First-order methods for nonsmooth problems

Common iterative methods take form

xt+1 = arg min
y

Fxt (y)

where Fxt = nonsmooth strongly convex model of F .

Example: Proximal point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

5 / 25

First-order methods for nonsmooth problems

Common iterative methods take form

xt+1 = arg min
y

Fxt (y)

where Fxt = nonsmooth strongly convex model of F .

Example: Proximal point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

5 / 25

First-order methods for nonsmooth problems

Common iterative methods take form

xt+1 = arg min
y

Fxt (y)

where Fxt = nonsmooth strongly convex model of F .

Example:

Proximal point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Proximal linear (for F = h ◦ c)

0.5

F

Fxt (y) = h(c(xt) +∇c(xt)(y − xt)) + 1
2η ‖y − xt‖

2

5 / 25

First-order methods for nonsmooth problems

Common iterative methods take form

xt+1 = arg min
y

Fxt (y)

where Fxt = nonsmooth strongly convex model of F .

Example:

Proximal point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.

5 / 25

Q: What is an avoidable saddle point in nonsmooth optimization?5

Recall C2 case: A strict saddle is critical point with negative curvature:

∇F (x) = 0 and λmin(∇2F (x)) < 0

Generalization Attempt: A strict saddle is critical point such that

• There exists direction v s.t.

g(t) := F (x+ tv) is C2.

• Function g has negative curvature:

g′′(0) < 0.

Equivalent when F is C2.

5(D-Drusvyatskiy ’19)
6 / 25

Q: What is an avoidable saddle point in nonsmooth optimization?5

Recall C2 case: A strict saddle is critical point with negative curvature:

∇F (x) = 0 and λmin(∇2F (x)) < 0

Generalization Attempt: A strict saddle is critical point such that

• There exists direction v s.t.

g(t) := F (x+ tv) is C2.

• Function g has negative curvature:

g′′(0) < 0.

Equivalent when F is C2.

5(D-Drusvyatskiy ’19)
6 / 25

Q: What is an avoidable saddle point in nonsmooth optimization?5

Recall C2 case: A strict saddle is critical point with negative curvature:

∇F (x) = 0 and λmin(∇2F (x)) < 0

Generalization Attempt: A strict saddle is critical point such that

• There exists direction v s.t.

g(t) := F (x+ tv) is C2.

• Function g has negative curvature:

g′′(0) < 0.

Equivalent when F is C2.

5(D-Drusvyatskiy ’19)
6 / 25

Q: What is an avoidable saddle point in nonsmooth optimization?5

Recall C2 case: A strict saddle is critical point with negative curvature:

∇F (x) = 0 and λmin(∇2F (x)) < 0

Generalization Attempt: A strict saddle is critical point such that

• There exists direction v s.t.

g(t) := F (x+ tv) is C2.

• Function g has negative curvature:

g′′(0) < 0.

Equivalent when F is C2.

5(D-Drusvyatskiy ’19)
6 / 25

Q: What is an avoidable saddle point in nonsmooth optimization?5

Recall C2 case: A strict saddle is critical point with negative curvature:

∇F (x) = 0 and λmin(∇2F (x)) < 0

Generalization Attempt: A strict saddle is critical point such that

• There exists direction v s.t.

g(t) := F (x+ tv) is C2.

• Function g has negative curvature:

g′′(0) < 0.

Equivalent when F is C2.

5(D-Drusvyatskiy ’19)
6 / 25

Q: What is an avoidable saddle point in nonsmooth optimization?5

Recall C2 case: A strict saddle is critical point with negative curvature:

∇F (x) = 0 and λmin(∇2F (x)) < 0

Generalization Attempt: A strict saddle is critical point such that

• There exists direction v s.t.

g(t) := F (x+ tv) is C2.

• Function g has negative curvature:

g′′(0) < 0.

Equivalent when F is C2.

5(D-Drusvyatskiy ’19)
6 / 25

Negative curvature is not enough even for C1 functions

(a) C1loss F

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

(b) Flow γ̇ = −∇F (γ)

F (x, y) = Moreau{(|x|+ |y|)2 − 2y2}

Negative curvature: F (0, y) = −αy2

Problem: do not reach y axis fast enough to benefit from curvature!

7 / 25

Negative curvature is not enough even for C1 functions

(a) C1loss F

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

(b) Flow γ̇ = −∇F (γ)

F (x, y) = Moreau{(|x|+ |y|)2 − 2y2}

Negative curvature: F (0, y) = −αy2

Problem: do not reach y axis fast enough to benefit from curvature!

7 / 25

An extra ingredient: sharpness
Idea: Require F to grow sharply away from axis:

inf{‖∇F (x, y)‖ : for (x, y) off of y axis} > 0

Benefit: Ensures grad. flow aims towards axis with (at least) constant speed.

(a) A nonsmooth loss F

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Flow γ̇ ∈ −∂F (γ)

Negative curvature: F (0, y) = −αy2

Question: How to generalize?

8 / 25

An extra ingredient: sharpness
Idea: Require F to grow sharply away from axis:

inf{‖∇F (x, y)‖ : for (x, y) off of y axis} > 0

Benefit: Ensures grad. flow aims towards axis with (at least) constant speed.

(a) A nonsmooth loss F

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Flow γ̇ ∈ −∂F (γ)

Negative curvature: F (0, y) = −αy2

Question: How to generalize?

8 / 25

An extra ingredient: sharpness
Idea: Require F to grow sharply away from axis:

inf{‖∇F (x, y)‖ : for (x, y) off of y axis} > 0

Benefit: Ensures grad. flow aims towards axis with (at least) constant speed.

(a) A nonsmooth loss F

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Flow γ̇ ∈ −∂F (γ)

Negative curvature: F (0, y) = −αy2

Question: How to generalize?

8 / 25

The active manifold
Idea: Replace axis with “active manifold” of smoothness.

Defn: Critical point lies on C2-smooth “active manifold M”:

1. F varies C2-smoothly along M.

2. F grows sharply normal to M:

inf{‖v‖ : v ∈ ∂F (z) : z ∈ U\M} > 0.

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

Question: What about curvature?

(Wright ’93, Lemaréchal-Oustry-Sagastizábal ’96, Bonnans-Shapiro ’00, Lewis ’03, Drusvyatskiy-Lewis ’14. . .)
9 / 25

The active manifold
Idea: Replace axis with “active manifold” of smoothness.

Defn: Critical point lies on C2-smooth “active manifold M”:

1. F varies C2-smoothly along M.

2. F grows sharply normal to M:

inf{‖v‖ : v ∈ ∂F (z) : z ∈ U\M} > 0.

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

Question: What about curvature?

(Wright ’93, Lemaréchal-Oustry-Sagastizábal ’96, Bonnans-Shapiro ’00, Lewis ’03, Drusvyatskiy-Lewis ’14. . .)
9 / 25

The active manifold
Idea: Replace axis with “active manifold” of smoothness.

Defn: Critical point lies on C2-smooth “active manifold M”:

1. F varies C2-smoothly along M.
2. F grows sharply normal to M:

inf{‖v‖ : v ∈ ∂F (z) : z ∈ U\M} > 0.

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

Question: What about curvature?

(Wright ’93, Lemaréchal-Oustry-Sagastizábal ’96, Bonnans-Shapiro ’00, Lewis ’03, Drusvyatskiy-Lewis ’14. . .)
9 / 25

The active manifold
Idea: Replace axis with “active manifold” of smoothness.

Defn: Critical point lies on C2-smooth “active manifold M”:

1. F varies C2-smoothly along M.
2. F grows sharply normal to M:

inf{‖v‖ : v ∈ ∂F (z) : z ∈ U\M} > 0.

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

Question: What about curvature?

(Wright ’93, Lemaréchal-Oustry-Sagastizábal ’96, Bonnans-Shapiro ’00, Lewis ’03, Drusvyatskiy-Lewis ’14. . .)
9 / 25

The active manifold
Idea: Replace axis with “active manifold” of smoothness.

Defn: Critical point lies on C2-smooth “active manifold M”:

1. F varies C2-smoothly along M.
2. F grows sharply normal to M:

inf{‖v‖ : v ∈ ∂F (z) : z ∈ U\M} > 0.

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

Question: What about curvature?
(Wright ’93, Lemaréchal-Oustry-Sagastizábal ’96, Bonnans-Shapiro ’00, Lewis ’03, Drusvyatskiy-Lewis ’14. . .)

9 / 25

Putting it all together: the active strict saddle property

Defn: (D-Drusvyatskiy ’19) a critical point x̄ of F is an active strict saddle if

1. F admits active manifold M containing x̄.

2. The smooth extension F ◦ PM has a strict saddle point at x̄:

λmin(∇2(F ◦ PM)(x̄)) < 0.

(a) A nonsmooth loss F

(b) Smooth extension F ◦ PM

10 / 25

Putting it all together: the active strict saddle property

Defn: (D-Drusvyatskiy ’19) a critical point x̄ of F is an active strict saddle if

1. F admits active manifold M containing x̄.

2. The smooth extension F ◦ PM has a strict saddle point at x̄:

λmin(∇2(F ◦ PM)(x̄)) < 0.

(a) A nonsmooth loss F (b) Smooth extension F ◦ PM

10 / 25

Putting it all together: the active strict saddle property

Defn: (D-Drusvyatskiy ’19) a critical point x̄ of F is an active strict saddle if

1. F admits active manifold M containing x̄.

2. The smooth extension F ◦ PM has a strict saddle point at x̄:

λmin(∇2(F ◦ PM)(x̄)) < 0.

(a) A nonsmooth loss F (b) Smooth extension F ◦ PM

10 / 25

Putting it all together: the active strict saddle property

Defn: (D-Drusvyatskiy ’19) a critical point x̄ of F is an active strict saddle if

1. F admits active manifold M containing x̄.

2. The smooth extension F ◦ PM has a strict saddle point at x̄:

λmin(∇2(F ◦ PM)(x̄)) < 0.

(a) A nonsmooth loss F (b) Smooth extension F ◦ PM

10 / 25

Putting it all together: the active strict saddle property

Defn: (D-Drusvyatskiy ’19) a critical point x̄ of F is an active strict saddle if

1. F admits active manifold M containing x̄.

2. The smooth extension F ◦ PM has a strict saddle point at x̄:

λmin(∇2(F ◦ PM)(x̄)) < 0.

(a) A nonsmooth loss F (b) Smooth extension F ◦ PM

10 / 25

Putting it all together: the active strict saddle property
Although it may seem stringent, this property is generic:

Theorem (Drusvyatskiy-Ioffe-Lewis ’16, D-Drusvyatskiy ’19)
If F is semi-algebraic and weakly convex, then for full Lebesgue measure set of
perturbations v ∈ Rd every critical point of

Fv(x) = F (x)− 〈v, x〉

is either an active strict saddle or a local minimizer.

(a) C1loss F

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

(b) Flow γ̇ = −∇F (γ)

Example is Highly Unstable: small linear tilts do not exhibit this behavior!

11 / 25

Putting it all together: the active strict saddle property
Although it may seem stringent, this property is generic:

Theorem (Drusvyatskiy-Ioffe-Lewis ’16, D-Drusvyatskiy ’19)
If F is semi-algebraic and weakly convex, then for full Lebesgue measure set of
perturbations v ∈ Rd every critical point of

Fv(x) = F (x)− 〈v, x〉

is either an active strict saddle or a local minimizer.

(a) C1loss F

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

(b) Flow γ̇ = −∇F (γ)

Example is Highly Unstable: small linear tilts do not exhibit this behavior!
11 / 25

Question: Do the three proximal methods avoid active strict saddles?

Strategy: Borrow “stable manifold theorem” argument from smooth setting!

Key: view algorithms
xt+1 = arg min

y

Fxt (y),

as fixed-point iteration of well-behaved operator T .6

6For the algorithms considered thus far, critical points are fixed points of the iteration.
12 / 25

Question: Do the three proximal methods avoid active strict saddles?

Strategy: Borrow “stable manifold theorem” argument from smooth setting!

Key: view algorithms
xt+1 = arg min

y

Fxt (y),

as fixed-point iteration of well-behaved operator T .6

6For the algorithms considered thus far, critical points are fixed points of the iteration.
12 / 25

Question: Do the three proximal methods avoid active strict saddles?

Strategy: Borrow “stable manifold theorem” argument from smooth setting!

Key: view algorithms
xt+1 = arg min

y

Fxt (y),

as fixed-point iteration of well-behaved operator T .6

6For the algorithms considered thus far, critical points are fixed points of the iteration.
12 / 25

Recipe for smooth functions
Fixed point iteration

xt+1 = T (xt)

[Grad descent is T = I − η∇F]

Recipe:

• Strict saddles x̄

∇F (x̄) = 0 and λmin(∇2F (x̄)) < 0

are unstable fixed points:

∇T (x̄) has EigVal of magnitude > 1

• Classical center-stable manifold theorem implies

W :=
{
x : lim

k→∞
T k(x) is unstable

}
has Lebesgue measure zero.

• Since random init will not land in W , algorithm avoids strict saddles

Important: Argument requires that T is local diffeomorphism.

13 / 25

Recipe for smooth functions
Fixed point iteration

xt+1 = T (xt) [Grad descent is T = I − η∇F]

Recipe:

• Strict saddles x̄

∇F (x̄) = 0 and λmin(∇2F (x̄)) < 0

are unstable fixed points:

∇T (x̄) has EigVal of magnitude > 1

• Classical center-stable manifold theorem implies

W :=
{
x : lim

k→∞
T k(x) is unstable

}
has Lebesgue measure zero.

• Since random init will not land in W , algorithm avoids strict saddles

Important: Argument requires that T is local diffeomorphism.

13 / 25

Recipe for smooth functions
Fixed point iteration

xt+1 = T (xt) [Grad descent is T = I − η∇F]

Recipe:

• Strict saddles x̄

∇F (x̄) = 0 and λmin(∇2F (x̄)) < 0

are unstable fixed points:

∇T (x̄) has EigVal of magnitude > 1

• Classical center-stable manifold theorem implies

W :=
{
x : lim

k→∞
T k(x) is unstable

}
has Lebesgue measure zero.

• Since random init will not land in W , algorithm avoids strict saddles

Important: Argument requires that T is local diffeomorphism.

13 / 25

Recipe for smooth functions
Fixed point iteration

xt+1 = T (xt) [Grad descent is T = I − η∇F]

Recipe:

• Strict saddles x̄

∇F (x̄) = 0 and λmin(∇2F (x̄)) < 0

are unstable fixed points:

∇T (x̄) has EigVal of magnitude > 1

• Classical center-stable manifold theorem implies

W :=
{
x : lim

k→∞
T k(x) is unstable

}
has Lebesgue measure zero.

• Since random init will not land in W , algorithm avoids strict saddles

Important: Argument requires that T is local diffeomorphism.

13 / 25

Recipe for smooth functions
Fixed point iteration

xt+1 = T (xt) [Grad descent is T = I − η∇F]

Recipe:

• Strict saddles x̄

∇F (x̄) = 0 and λmin(∇2F (x̄)) < 0

are unstable fixed points:

∇T (x̄) has EigVal of magnitude > 1

• Classical center-stable manifold theorem implies

W :=
{
x : lim

k→∞
T k(x) is unstable

}
has Lebesgue measure zero.

• Since random init will not land in W , algorithm avoids strict saddles

Important: Argument requires that T is local diffeomorphism.

13 / 25

Recipe for smooth functions
Fixed point iteration

xt+1 = T (xt) [Grad descent is T = I − η∇F]

Recipe:

• Strict saddles x̄

∇F (x̄) = 0 and λmin(∇2F (x̄)) < 0

are unstable fixed points:

∇T (x̄) has EigVal of magnitude > 1

• Classical center-stable manifold theorem implies

W :=
{
x : lim

k→∞
T k(x) is unstable

}
has Lebesgue measure zero.

• Since random init will not land in W , algorithm avoids strict saddles

Important: Argument requires that T is local diffeomorphism.
13 / 25

Beyond gradient descent

To apply argument, need

1. Local Smoothness: The update mapping

S(x) = arg min
y

Fx(y),

is a local C1 diffeomorphism near active strict saddle points.

2. Unstable: Active strict saddle points x̄ are unstable:

∇S(x̄) has EigVal of magnitude > 1.

Focus on Local Smoothness, since other calculation complex.

14 / 25

Beyond gradient descent

To apply argument, need

1. Local Smoothness: The update mapping

S(x) = arg min
y

Fx(y),

is a local C1 diffeomorphism near active strict saddle points.

2. Unstable: Active strict saddle points x̄ are unstable:

∇S(x̄) has EigVal of magnitude > 1.

Focus on Local Smoothness, since other calculation complex.

14 / 25

Beyond gradient descent

To apply argument, need

1. Local Smoothness: The update mapping

S(x) = arg min
y

Fx(y),

is a local C1 diffeomorphism near active strict saddle points.

2. Unstable: Active strict saddle points x̄ are unstable:

∇S(x̄) has EigVal of magnitude > 1.

Focus on Local Smoothness, since other calculation complex.

14 / 25

Local smoothness

Surprising: Function F is nonsmooth, yet S is C1 around strict saddles. Why?

Sharpness =⇒ Identification
S(x) ∈M near x̄!

Example: Prox-point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Important: Do not need to know M!

Consequence (Prox-point Method):

S(x) = arg min
y

F (y) + 1
2η ‖y − x‖

2= arg min
y∈M

F (y) + 1
2η ‖y − x‖

2.

=⇒ minimizing smooth function over smooth manifold!

Then Weak convexity + classical perturbation theory =⇒ S is C1 near x̄.7

7Lemaréchal-Sagastizábal ’97
15 / 25

Local smoothness

Surprising: Function F is nonsmooth, yet S is C1 around strict saddles. Why?

Sharpness =⇒ Identification
S(x) ∈M near x̄!

Example: Prox-point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Important: Do not need to know M!

Consequence (Prox-point Method):

S(x) = arg min
y

F (y) + 1
2η ‖y − x‖

2= arg min
y∈M

F (y) + 1
2η ‖y − x‖

2.

=⇒ minimizing smooth function over smooth manifold!

Then Weak convexity + classical perturbation theory =⇒ S is C1 near x̄.7

7Lemaréchal-Sagastizábal ’97
15 / 25

Local smoothness

Surprising: Function F is nonsmooth, yet S is C1 around strict saddles. Why?

Sharpness =⇒ Identification
S(x) ∈M near x̄!

Example: Prox-point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Important: Do not need to know M!

Consequence (Prox-point Method):

S(x) = arg min
y

F (y) + 1
2η ‖y − x‖

2= arg min
y∈M

F (y) + 1
2η ‖y − x‖

2.

=⇒ minimizing smooth function over smooth manifold!

Then Weak convexity + classical perturbation theory =⇒ S is C1 near x̄.7

7Lemaréchal-Sagastizábal ’97
15 / 25

Local smoothness

Surprising: Function F is nonsmooth, yet S is C1 around strict saddles. Why?

Sharpness =⇒ Identification
S(x) ∈M near x̄!

Example: Prox-point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Important: Do not need to know M!

Consequence (Prox-point Method):

S(x) = arg min
y

F (y) + 1
2η ‖y − x‖

2= arg min
y∈M

F (y) + 1
2η ‖y − x‖

2.

=⇒ minimizing smooth function over smooth manifold!

Then Weak convexity + classical perturbation theory =⇒ S is C1 near x̄.7

7Lemaréchal-Sagastizábal ’97
15 / 25

Local smoothness

Surprising: Function F is nonsmooth, yet S is C1 around strict saddles. Why?

Sharpness =⇒ Identification
S(x) ∈M near x̄!

Example: Prox-point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Important: Do not need to know M!

Consequence (Prox-point Method):

S(x) = arg min
y

F (y) + 1
2η ‖y − x‖

2= arg min
y∈M

F (y) + 1
2η ‖y − x‖

2.

=⇒ minimizing smooth function over smooth manifold!

Then Weak convexity + classical perturbation theory =⇒ S is C1 near x̄.7

7Lemaréchal-Sagastizábal ’97
15 / 25

Local smoothness

Surprising: Function F is nonsmooth, yet S is C1 around strict saddles. Why?

Sharpness =⇒ Identification
S(x) ∈M near x̄!

Example: Prox-point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Important: Do not need to know M!

Consequence (Prox-point Method):

S(x) = arg min
y

F (y) + 1
2η ‖y − x‖

2= arg min
y∈M

F (y) + 1
2η ‖y − x‖

2.

=⇒ minimizing smooth function over smooth manifold!

Then Weak convexity + classical perturbation theory =⇒ S is C1 near x̄.7

7Lemaréchal-Sagastizábal ’97
15 / 25

Avoiding active strict saddles

Proof extends to the three methods:
Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.

Proof more interesting/surprising for prox-gradient and prox-linear.

16 / 25

Avoiding active strict saddles

Theorem: (Local smoothness, D-Drusvyatskiy ’19)
Around each active strict saddle x̄ of F , the iteration mapping

S(x) = arg min
y

Fx(y),

is C1 and the Jacobian ∇S(x̄) has a real EigVal strictly greater than 1

Proof more interesting/surprising for prox-gradient and prox-linear.

16 / 25

Avoiding active strict saddles

Problem: S may not be Local diffeomorphism

Easy solution: Add damping

T = (1− λ)I + λS.

17 / 25

Avoiding active strict saddles

Problem: S may not be Local diffeomorphism

Easy solution: Add damping

T = (1− λ)I + λS.

17 / 25

Avoiding active strict saddles

Corollary: (Random initialization, D-Drusvyatskiy ’19)

Randomly initialized three methods with small damping

xt+1 = (1− λ)xt + λS(xt),

locally escape active strict saddles.

Globalization:

• Results hold globally when S is Lipschitz (prox-point, prox-gradient)

• Open Problem: Is prox-linear update globally Lipschitz?

17 / 25

Beyond proximal methods

Limitation of result: Only applies to three “proximal methods.”

Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.

Drawbacks:

1. Numerical Difficulties: need exact solutions to subproblems.

2. Decomposable structure not always available.

Alternative: subgradient method

18 / 25

Beyond proximal methods

Limitation of result: Only applies to three “proximal methods.”

Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.

Drawbacks:

1. Numerical Difficulties: need exact solutions to subproblems.

2. Decomposable structure not always available.

Alternative: subgradient method

18 / 25

Beyond proximal methods

Limitation of result: Only applies to three “proximal methods.”

Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.

Drawbacks:

1. Numerical Difficulties: need exact solutions to subproblems.

2. Decomposable structure not always available.

Alternative: subgradient method

18 / 25

Beyond proximal methods

Limitation of result: Only applies to three “proximal methods.”

Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.

Drawbacks:

1. Numerical Difficulties: need exact solutions to subproblems.

2. Decomposable structure not always available.

Alternative: subgradient method

18 / 25

The subdifferential of a weakly convex function

Fact: For any F : Rd → R, have equivalence:

• F is ρ-weakly convex

• Subgradient inequality: ∀x∃vx satisfying

F (y) ≥ F (x) + 〈vx, y − x〉−
ρ

2‖y − x‖
2

0.5

Subdifferential: ∂F (x) := {vx}

Calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

Fermat’s rule: If x̄ is a local minimizer of F then

0 ∈ ∂F (x̄).

19 / 25

The subdifferential of a weakly convex function

Fact: For any F : Rd → R, have equivalence:

• F is ρ-weakly convex

• Subgradient inequality: ∀x∃vx satisfying

F (y) ≥ F (x) + 〈vx, y − x〉−
ρ

2‖y − x‖
2

0.5

Subdifferential: ∂F (x) := {vx}

Calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

Fermat’s rule: If x̄ is a local minimizer of F then

0 ∈ ∂F (x̄).

19 / 25

The subdifferential of a weakly convex function

Fact: For any F : Rd → R, have equivalence:

• F is ρ-weakly convex

• Subgradient inequality: ∀x∃vx satisfying

F (y) ≥ F (x) + 〈vx, y − x〉−
ρ

2‖y − x‖
2

0.5

Subdifferential: ∂F (x) := {vx}

Calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

Fermat’s rule: If x̄ is a local minimizer of F then

0 ∈ ∂F (x̄).

19 / 25

The subdifferential of a weakly convex function

Fact: For any F : Rd → R, have equivalence:

• F is ρ-weakly convex

• Subgradient inequality: ∀x∃vx satisfying

F (y) ≥ F (x) + 〈vx, y − x〉−
ρ

2‖y − x‖
2

0.5

Subdifferential: ∂F (x) := {vx}

Calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

Fermat’s rule: If x̄ is a local minimizer of F then

0 ∈ ∂F (x̄).

19 / 25

Alternative: the subgradient method

Idea: At time t

1. “Linearize F :” choose vt ∈ ∂F (xt) and form

Fxt,αt (y) = F (xt) + 〈vt, y − xt〉+ 1
2αt
‖y − xt‖2.

2. Next iterate minimizes:

xt+1 = arg min
y

Fxt,αt (y)

= xt − αtvt.

0.5

F

Benefits:

1. Computable with extensive calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

2. Can often replace vt with result of auto-differentiation procedure.8

8Bolte-Pauwels ’19-’20
20 / 25

Alternative: the subgradient method

Idea: At time t

1. “Linearize F :” choose vt ∈ ∂F (xt) and form

Fxt,αt (y) = F (xt) + 〈vt, y − xt〉+ 1
2αt
‖y − xt‖2.

2. Next iterate minimizes:

xt+1 = arg min
y

Fxt,αt (y)

= xt − αtvt.

0.5

F

Benefits:

1. Computable with extensive calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

2. Can often replace vt with result of auto-differentiation procedure.8

8Bolte-Pauwels ’19-’20
20 / 25

Alternative: the subgradient method

Idea: At time t

1. “Linearize F :” choose vt ∈ ∂F (xt) and form

Fxt,αt (y) = F (xt) + 〈vt, y − xt〉+ 1
2αt
‖y − xt‖2.

2. Next iterate minimizes:

xt+1 = arg min
y

Fxt,αt (y)

= xt − αtvt.

0.5

F

Benefits:

1. Computable with extensive calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

2. Can often replace vt with result of auto-differentiation procedure.8

8Bolte-Pauwels ’19-’20
20 / 25

Alternative: the subgradient method

Idea: At time t

1. “Linearize F :” choose vt ∈ ∂F (xt) and form

Fxt,αt (y) = F (xt) + 〈vt, y − xt〉+ 1
2αt
‖y − xt‖2.

2. Next iterate minimizes:

xt+1 = arg min
y

Fxt,αt (y)

= xt − αtvt.

0.5

F

Benefits:

1. Computable with extensive calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

2. Can often replace vt with result of auto-differentiation procedure.8

8Bolte-Pauwels ’19-’20
20 / 25

Alternative: the subgradient method

Idea: At time t

1. “Linearize F :” choose vt ∈ ∂F (xt) and form

Fxt,αt (y) = F (xt) + 〈vt, y − xt〉+ 1
2αt
‖y − xt‖2.

2. Next iterate minimizes:

xt+1 = arg min
y

Fxt,αt (y)

= xt − αtvt.

0.5

F

Benefits:

1. Computable with extensive calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

2. Can often replace vt with result of auto-differentiation procedure.8

8Bolte-Pauwels ’19-’20
20 / 25

Alternative: the subgradient method

Idea: At time t

1. “Linearize F :” choose vt ∈ ∂F (xt) and form

Fxt,αt (y) = F (xt) + 〈vt, y − xt〉+ 1
2αt
‖y − xt‖2.

2. Next iterate minimizes:

xt+1 = arg min
y

Fxt,αt (y)

= xt − αtvt.

0.5

F

Benefits:

1. Computable with extensive calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

2. Can often replace vt with result of auto-differentiation procedure.8

8Bolte-Pauwels ’19-’20
20 / 25

Extension: Subgradient method

Question: Does subgradient method avoid active strict saddle points?

xt+1 ∈ xt − αt∂F (xt)

Difficulties:

• Identification fails: xt /∈M.

• Unclear how to leverage smoothness on the manifold.

Our recent work9 overcomes these difficulties.
Key: “orthogonal decomposition” of trajectory.

9D-Drusvyatskiy-Jiang ’21
21 / 25

Extension: Subgradient method

Question: Does subgradient method avoid active strict saddle points?

xt+1 ∈ xt − αt∂F (xt)

Difficulties:

• Identification fails: xt /∈M.

• Unclear how to leverage smoothness on the manifold.

Our recent work9 overcomes these difficulties.

Key: “orthogonal decomposition” of trajectory.

9D-Drusvyatskiy-Jiang ’21
21 / 25

Extension: Subgradient method

Question: Does subgradient method avoid active strict saddle points?

xt+1 ∈ xt − αt∂F (xt)

Difficulties:

• Identification fails: xt /∈M.

• Unclear how to leverage smoothness on the manifold.

Our recent work9 overcomes these difficulties.
Key: “orthogonal decomposition” of trajectory.

9D-Drusvyatskiy-Jiang ’21
21 / 25

VU decomposition10

+=

F FV FU

Decompose trajectory:

1. Tangent directions:

PM(xt+1) ≈ PM(xt)− αt∇FU (xt)

2. Normal directions:

xt+1 − PM(xt+1) ≈ xt − PM(xt)− αt∇̃FV(xt)

10Mifflin-Sagastizábal ’05
22 / 25

VU decomposition10

+=

F FV FU

Decompose trajectory:

1. Tangent directions:

PM(xt+1) ≈ PM(xt)− αt∇FU (xt)

2. Normal directions:

xt+1 − PM(xt+1) ≈ xt − PM(xt)− αt∇̃FV(xt)

10Mifflin-Sagastizábal ’05
22 / 25

VU decomposition10

+=

F FV FU

Decompose trajectory:

1. Tangent directions:

PM(xt+1) ≈ PM(xt)− αt∇FU (xt)

2. Normal directions:

xt+1 − PM(xt+1) ≈ xt − PM(xt)− αt∇̃FV(xt)

10Mifflin-Sagastizábal ’05
22 / 25

VU decomposition10

+=

F FV FU

Decompose trajectory:

1. Tangent directions:

PM(xt+1) ≈ PM(xt)− αt∇FU (xt)

2. Normal directions:

xt+1 − PM(xt+1) ≈ xt − PM(xt)− αt∇̃FV(xt)

10Mifflin-Sagastizábal ’05
22 / 25

The two regularity assumptions
1. Aiming: Negative subgradients aim towards manifold:

Sharpness =⇒ 〈∇̃FV(xt), xt − PM(xt)〉 ≥ µ dist(xt,M)

2. Smooth in tangent directions:

‖PTM(y)∇̃FV(xt)‖ ≤ C‖xt − y‖ for y ∈M.

Prevalent: true generically for weakly convex semialgebraic problems.

23 / 25

The two regularity assumptions
1. Aiming: Negative subgradients aim towards manifold:

Sharpness =⇒ 〈∇̃FV(xt), xt − PM(xt)〉 ≥ µ dist(xt,M)

2. Smooth in tangent directions:

‖PTM(y)∇̃FV(xt)‖ ≤ C‖xt − y‖ for y ∈M.

Prevalent: true generically for weakly convex semialgebraic problems.

23 / 25

The two regularity assumptions
1. Aiming: Negative subgradients aim towards manifold:

Sharpness =⇒ 〈∇̃FV(xt), xt − PM(xt)〉 ≥ µ dist(xt,M)

2. Smooth in tangent directions:

‖PTM(y)∇̃FV(xt)‖ ≤ C‖xt − y‖ for y ∈M.

Prevalent: true generically for weakly convex semialgebraic problems.
23 / 25

The two pillars
The two pillars: For a wide class of problems
• Subgradient method quickly approaches the active manifold:

dist(xt,M) = O(αt).

• The shadow yt = PM(xt) forms inexact Riemannian gradient sequence:

yt+1 = yt − αt∇MF (yt) +O(αtdist(xt,M) + α2
t).

xk
M

PM(xk)

(a) Quickly approach manifold

(b) “Smooth in tangent directions”

Conclusion: Get to the manifold quick enough to leverage smoothness of F !

24 / 25

The two pillars
The two pillars: For a wide class of problems
• Subgradient method quickly approaches the active manifold:

dist(xt,M) = O(αt).

• The shadow yt = PM(xt) forms inexact Riemannian gradient sequence:

yt+1 = yt − αt∇MF (yt) +O(αtdist(xt,M) + α2
t).

xk
M

PM(xk)

(a) Quickly approach manifold (b) “Smooth in tangent directions”

Conclusion: Get to the manifold quick enough to leverage smoothness of F !

24 / 25

The two pillars
The two pillars: For a wide class of problems
• Subgradient method quickly approaches the active manifold:

dist(xt,M) = O(αt).

• The shadow yt = PM(xt) forms inexact Riemannian gradient sequence:

yt+1 = yt − αt∇MF (yt) +O(αtdist(xt,M) + α2
t).

xk
M

PM(xk)

(a) Quickly approach manifold (b) “Smooth in tangent directions”

Conclusion: Get to the manifold quick enough to leverage smoothness of F !

24 / 25

Main result

Due to inexactness, must analyze “perturbed” subgradient method11:

xt+1 ∈ xt − αt(∂F (xt) + νt) where νt ∼ Unif(B).

Under mild conditions, we show

Theorem: (D-Drusvyatskiy-Jiang ’19)12

Almost surely, xt does not converge to an active strict saddle point.

Corollary: (D-Drusvyatskiy-Jiang ’19)
Perturbed subgradient method converges only to local minimizers of
generic semialgebraic weakly convex functions.

Extensions.

1. Algorithms: Proximal/projected subgradient methods.

2. Beyond weak convexity: Clarke regularity.

11D-Drusvyatskiy-Jiang ’21
12Concurrent work: Bianchi-Hachem-Schechtman’21.

25 / 25

Main result
Due to inexactness, must analyze “perturbed” subgradient method11:

xt+1 ∈ xt − αt(∂F (xt) + νt) where νt ∼ Unif(B).

=⇒ yt+1 = yt − αt(∇MF (yt) + νt) +O(αtdist(xt,M) + α2
t).

Under mild conditions, we show

Theorem: (D-Drusvyatskiy-Jiang ’19)12

Almost surely, xt does not converge to an active strict saddle point.

Corollary: (D-Drusvyatskiy-Jiang ’19)
Perturbed subgradient method converges only to local minimizers of
generic semialgebraic weakly convex functions.

Extensions.

1. Algorithms: Proximal/projected subgradient methods.
2. Beyond weak convexity: Clarke regularity.

11D-Drusvyatskiy-Jiang ’21
12Concurrent work: Bianchi-Hachem-Schechtman’21.

25 / 25

Main result

Due to inexactness, must analyze “perturbed” subgradient method11:

xt+1 ∈ xt − αt(∂F (xt) + νt) where νt ∼ Unif(B).

Under mild conditions, we show

Theorem: (D-Drusvyatskiy-Jiang ’19)12

Almost surely, xt does not converge to an active strict saddle point.

Corollary: (D-Drusvyatskiy-Jiang ’19)
Perturbed subgradient method converges only to local minimizers of
generic semialgebraic weakly convex functions.

Extensions.

1. Algorithms: Proximal/projected subgradient methods.

2. Beyond weak convexity: Clarke regularity.

11D-Drusvyatskiy-Jiang ’21
12Concurrent work: Bianchi-Hachem-Schechtman’21.

25 / 25

Main result

Due to inexactness, must analyze “perturbed” subgradient method11:

xt+1 ∈ xt − αt(∂F (xt) + νt) where νt ∼ Unif(B).

Under mild conditions, we show

Theorem: (D-Drusvyatskiy-Jiang ’19)12

Almost surely, xt does not converge to an active strict saddle point.

Corollary: (D-Drusvyatskiy-Jiang ’19)
Perturbed subgradient method converges only to local minimizers of
generic semialgebraic weakly convex functions.

Extensions.

1. Algorithms: Proximal/projected subgradient methods.

2. Beyond weak convexity: Clarke regularity.

11D-Drusvyatskiy-Jiang ’21
12Concurrent work: Bianchi-Hachem-Schechtman’21.

25 / 25

Main result

Due to inexactness, must analyze “perturbed” subgradient method11:

xt+1 ∈ xt − αt(∂F (xt) + νt) where νt ∼ Unif(B).

Under mild conditions, we show

Theorem: (D-Drusvyatskiy-Jiang ’19)12

Almost surely, xt does not converge to an active strict saddle point.

Corollary: (D-Drusvyatskiy-Jiang ’19)
Perturbed subgradient method converges only to local minimizers of
generic semialgebraic weakly convex functions.

Extensions.

1. Algorithms: Proximal/projected subgradient methods.

2. Beyond weak convexity: Clarke regularity.

11D-Drusvyatskiy-Jiang ’21
12Concurrent work: Bianchi-Hachem-Schechtman’21.

25 / 25

Main result

Due to inexactness, must analyze “perturbed” subgradient method11:

xt+1 ∈ xt − αt(∂F (xt) + νt) where νt ∼ Unif(B).

Under mild conditions, we show

Theorem: (D-Drusvyatskiy-Jiang ’19)12

Almost surely, xt does not converge to an active strict saddle point.

Corollary: (D-Drusvyatskiy-Jiang ’19)
Perturbed subgradient method converges only to local minimizers of
generic semialgebraic weakly convex functions.

Extensions.

1. Algorithms: Proximal/projected subgradient methods.

2. Beyond weak convexity: Clarke regularity.

11D-Drusvyatskiy-Jiang ’21
12Concurrent work: Bianchi-Hachem-Schechtman’21.

25 / 25

Thank you!

25 / 25

References

• Proximal methods avoid active strict saddles of weakly convex functions
D, Drusvyatskiy. Found. Comput. Math. arxiv.org/abs/1912.07146.

• Subgradient methods near active manifolds: saddle point avoidance, local
convergence, and asymptotic normality
D, Drusvyatskiy, Jiang. https://arxiv.org/abs/2108.11832.

25 / 25

arxiv.org/abs/1912.07146
https://arxiv.org/abs/2108.11832

	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

