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Saddle point avoidance
Recent Realization:

Simple algorithms for minimizing C2 functions avoid all strict saddle
points, when randomly initialized.1

• Simple algorithms: Gradient descent (GD), coordinate descent....
• Strict saddle points: Critical points that have negative curvature.
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Weak convexity: an amenable problem class

minimize
x∈Rd

F (x)

Running assumption: weak convexity

F (·) + ρ

2‖ · ‖
2 is convex.

Main example: (convex) ◦ (smooth)

h(c(x))

h is convex and L-Lipschitz; c is smooth with `-Lipschitz Jacobian (ρ = L`)
(Fletcher ’80, Powell ’83, Burke ’85, Wright ’90, Lewis-Wright ’08, Cartis-Gould-Toint ’11,. . . )
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Example: Low-rank Matrix Estimation
Set-up: Fix rank r matrix M] � 0 and observe measurements

〈Ai,M]〉 ≈ bi ∀i = 1, . . . ,m.

Goal: Recover M] from bi

Examples: Matrix completion, robust PCA, phase retrieval...

Natural Nonconvex Penalty Formulation:3

min
M∈Rd×d

|||A(M)− b||| subject to: M is rank ≤ rM = XXT X ∈ Rd×rmin
X∈Rd×r

h(c(X)) := |||A(XX>)− b|||

Question: Is there a natural norm |||·||| that enables recovery?

Typical norms4: |||·||| = 1√
m
‖ · ‖2 and |||·||| = 1

m
‖ · ‖1

• `2: Gaussian Ai/Gaussian noise, leads to smooth problems.

• `1: structured Ai/sparse corruption, leads to nonsmooth problems.

3Burer-Monteiro ’01
4Candes-Tao ’05, Chen-Chi-Goldsmith ’13
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First-order methods for nonsmooth problems

Common iterative methods take form

xt+1 = arg min
y

Fxt (y)

where Fxt = nonsmooth strongly convex model of F .

Example: Proximal point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2
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First-order methods for nonsmooth problems

Common iterative methods take form

xt+1 = arg min
y

Fxt (y)

where Fxt = nonsmooth strongly convex model of F .

Example:

Proximal point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.
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Q: What is an avoidable saddle point in nonsmooth optimization?5

Recall C2 case: A strict saddle is critical point with negative curvature:

∇F (x) = 0 and λmin(∇2F (x)) < 0

Generalization Attempt: A strict saddle is critical point such that

• There exists direction v s.t.

g(t) := F (x+ tv) is C2.

• Function g has negative curvature:

g′′(0) < 0.

Equivalent when F is C2.

5(D-Drusvyatskiy ’19)
6 / 25
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Negative curvature is not enough even for C1 functions

(a) C1loss F

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

(b) Flow γ̇ = −∇F (γ)

F (x, y) = Moreau{(|x|+ |y|)2 − 2y2}

Negative curvature: F (0, y) = −αy2

Problem: do not reach y axis fast enough to benefit from curvature!
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An extra ingredient: sharpness
Idea: Require F to grow sharply away from axis:

inf{‖∇F (x, y)‖ : for (x, y) off of y axis} > 0

Benefit: Ensures grad. flow aims towards axis with (at least) constant speed.

(a) A nonsmooth loss F

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Flow γ̇ ∈ −∂F (γ)

Negative curvature: F (0, y) = −αy2

Question: How to generalize?
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The active manifold
Idea: Replace axis with “active manifold” of smoothness.

Defn: Critical point lies on C2-smooth “active manifold M”:

1. F varies C2-smoothly along M.

2. F grows sharply normal to M:

inf{‖v‖ : v ∈ ∂F (z) : z ∈ U\M} > 0.

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

Question: What about curvature?

(Wright ’93, Lemaréchal-Oustry-Sagastizábal ’96, Bonnans-Shapiro ’00, Lewis ’03, Drusvyatskiy-Lewis ’14. . . )
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Putting it all together: the active strict saddle property

Defn: (D-Drusvyatskiy ’19) a critical point x̄ of F is an active strict saddle if

1. F admits active manifold M containing x̄.

2. The smooth extension F ◦ PM has a strict saddle point at x̄:

λmin(∇2(F ◦ PM)(x̄)) < 0.

(a) A nonsmooth loss F

(b) Smooth extension F ◦ PM

10 / 25
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Putting it all together: the active strict saddle property
Although it may seem stringent, this property is generic:

Theorem (Drusvyatskiy-Ioffe-Lewis ’16, D-Drusvyatskiy ’19)
If F is semi-algebraic and weakly convex, then for full Lebesgue measure set of
perturbations v ∈ Rd every critical point of

Fv(x) = F (x)− 〈v, x〉

is either an active strict saddle or a local minimizer.

(a) C1loss F

-
3

-
2

-
1

0
1

2
3

-
3

-
2

-
10123

(b) Flow γ̇ = −∇F (γ)

Example is Highly Unstable: small linear tilts do not exhibit this behavior!
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Question: Do the three proximal methods avoid active strict saddles?

Strategy: Borrow “stable manifold theorem” argument from smooth setting!

Key: view algorithms
xt+1 = arg min

y

Fxt (y),

as fixed-point iteration of well-behaved operator T .6

6For the algorithms considered thus far, critical points are fixed points of the iteration.
12 / 25
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Recipe for smooth functions
Fixed point iteration

xt+1 = T (xt)

[Grad descent is T = I − η∇F ]

Recipe:

• Strict saddles x̄

∇F (x̄) = 0 and λmin(∇2F (x̄)) < 0

are unstable fixed points:

∇T (x̄) has EigVal of magnitude > 1

• Classical center-stable manifold theorem implies

W :=
{
x : lim

k→∞
T k(x) is unstable

}
has Lebesgue measure zero.

• Since random init will not land in W , algorithm avoids strict saddles

Important: Argument requires that T is local diffeomorphism.
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Beyond gradient descent

To apply argument, need

1. Local Smoothness: The update mapping

S(x) = arg min
y

Fx(y),

is a local C1 diffeomorphism near active strict saddle points.

2. Unstable: Active strict saddle points x̄ are unstable:

∇S(x̄) has EigVal of magnitude > 1.

Focus on Local Smoothness, since other calculation complex.
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Local smoothness

Surprising: Function F is nonsmooth, yet S is C1 around strict saddles. Why?

Sharpness =⇒ Identification
S(x) ∈M near x̄!

Example: Prox-point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Important: Do not need to know M!

Consequence (Prox-point Method):

S(x) = arg min
y

F (y) + 1
2η ‖y − x‖

2= arg min
y∈M

F (y) + 1
2η ‖y − x‖

2.

=⇒ minimizing smooth function over smooth manifold!

Then Weak convexity + classical perturbation theory =⇒ S is C1 near x̄.7

7Lemaréchal-Sagastizábal ’97
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15 / 25



Local smoothness

Surprising: Function F is nonsmooth, yet S is C1 around strict saddles. Why?

Sharpness =⇒ Identification
S(x) ∈M near x̄!

Example: Prox-point

0.5
F

Fxt (y) = F (y) + 1
2η ‖y − xt‖

2

Important: Do not need to know M!

Consequence (Prox-point Method):

S(x) = arg min
y

F (y) + 1
2η ‖y − x‖

2= arg min
y∈M

F (y) + 1
2η ‖y − x‖

2.

=⇒ minimizing smooth function over smooth manifold!

Then Weak convexity + classical perturbation theory =⇒ S is C1 near x̄.7
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Avoiding active strict saddles

Proof extends to the three methods:
Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.

Proof more interesting/surprising for prox-gradient and prox-linear.
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Avoiding active strict saddles

Theorem: (Local smoothness, D-Drusvyatskiy ’19)
Around each active strict saddle x̄ of F , the iteration mapping

S(x) = arg min
y

Fx(y),

is C1 and the Jacobian ∇S(x̄) has a real EigVal strictly greater than 1

Proof more interesting/surprising for prox-gradient and prox-linear.
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Avoiding active strict saddles

Problem: S may not be Local diffeomorphism

Easy solution: Add damping

T = (1− λ)I + λS.
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Avoiding active strict saddles

Corollary: (Random initialization, D-Drusvyatskiy ’19)

Randomly initialized three methods with small damping

xt+1 = (1− λ)xt + λS(xt),

locally escape active strict saddles.

Globalization:

• Results hold globally when S is Lipschitz (prox-point, prox-gradient)

• Open Problem: Is prox-linear update globally Lipschitz?
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Beyond proximal methods

Limitation of result: Only applies to three “proximal methods.”

Algorithm Objective F Update function Fx(y)

Prox-point F (x) F (y) + 1
2η ‖y − x‖

2

Prox-linear h(c(x)) + r(x) h(c(x) +∇c(x)(y − x)) + r(y) + 1
2η ‖y − x‖

2

Prox-gradient f(x) + r(x) f(x) + 〈∇f(x), y − x〉+ r(y) + 1
2η ‖y − x‖

2

Table: h is convex and Lipschitz, r is weakly convex, and f and c are C2-smooth.

Drawbacks:

1. Numerical Difficulties: need exact solutions to subproblems.

2. Decomposable structure not always available.

Alternative: subgradient method
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The subdifferential of a weakly convex function

Fact: For any F : Rd → R, have equivalence:

• F is ρ-weakly convex

• Subgradient inequality: ∀x∃vx satisfying

F (y) ≥ F (x) + 〈vx, y − x〉−
ρ

2‖y − x‖
2

0.5

Subdifferential: ∂F (x) := {vx}

Calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

Fermat’s rule: If x̄ is a local minimizer of F then

0 ∈ ∂F (x̄).
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Alternative: the subgradient method

Idea: At time t

1. “Linearize F :” choose vt ∈ ∂F (xt) and form

Fxt,αt (y) = F (xt) + 〈vt, y − xt〉+ 1
2αt
‖y − xt‖2.

2. Next iterate minimizes:

xt+1 = arg min
y

Fxt,αt (y)

= xt − αtvt.

0.5

F

Benefits:

1. Computable with extensive calculus: ∂(h ◦ c)(x) := ∇c(x)T ∂h(c(x))

2. Can often replace vt with result of auto-differentiation procedure.8

8Bolte-Pauwels ’19-’20
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Extension: Subgradient method

Question: Does subgradient method avoid active strict saddle points?

xt+1 ∈ xt − αt∂F (xt)

Difficulties:

• Identification fails: xt /∈M.

• Unclear how to leverage smoothness on the manifold.

Our recent work9 overcomes these difficulties.
Key: “orthogonal decomposition” of trajectory.

9D-Drusvyatskiy-Jiang ’21
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VU decomposition10

+=

F FV FU

Decompose trajectory:

1. Tangent directions:

PM(xt+1) ≈ PM(xt)− αt∇FU (xt)

2. Normal directions:

xt+1 − PM(xt+1) ≈ xt − PM(xt)− αt∇̃FV(xt)

10Mifflin-Sagastizábal ’05
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The two regularity assumptions
1. Aiming: Negative subgradients aim towards manifold:

Sharpness =⇒ 〈∇̃FV(xt), xt − PM(xt)〉 ≥ µ dist(xt,M)

2. Smooth in tangent directions:

‖PTM(y)∇̃FV(xt)‖ ≤ C‖xt − y‖ for y ∈M.

Prevalent: true generically for weakly convex semialgebraic problems.
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The two pillars
The two pillars: For a wide class of problems
• Subgradient method quickly approaches the active manifold:

dist(xt,M) = O(αt).

• The shadow yt = PM(xt) forms inexact Riemannian gradient sequence:

yt+1 = yt − αt∇MF (yt) +O(αtdist(xt,M) + α2
t ).

xk
M

PM(xk)

(a) Quickly approach manifold

(b) “Smooth in tangent directions”

Conclusion: Get to the manifold quick enough to leverage smoothness of F !
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Conclusion: Get to the manifold quick enough to leverage smoothness of F !
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Main result

Due to inexactness, must analyze “perturbed” subgradient method11:

xt+1 ∈ xt − αt(∂F (xt) + νt) where νt ∼ Unif(B).

Under mild conditions, we show

Theorem: (D-Drusvyatskiy-Jiang ’19)12

Almost surely, xt does not converge to an active strict saddle point.

Corollary: (D-Drusvyatskiy-Jiang ’19)
Perturbed subgradient method converges only to local minimizers of
generic semialgebraic weakly convex functions.

Extensions.

1. Algorithms: Proximal/projected subgradient methods.

2. Beyond weak convexity: Clarke regularity.

11D-Drusvyatskiy-Jiang ’21
12Concurrent work: Bianchi-Hachem-Schechtman’21.
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Thank you!
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