Homework Assignments for ORIE 6300: Mathematical Programming I

Damek Davis*

^{*}School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850, USA; people.orie.cornell.edu/dsd95/.

- 1. Prove the following basic consequences of convexity:
 - (a) The set of optimal solutions to a convex program is convex.
 - (b) Intersections of convex sets are convex.
 - (c) Cartesian products of convex sets are convex.
 - (d) If \mathcal{X}_1 and \mathcal{X}_2 are convex, then so is $\mathcal{X}_1 + \mathcal{X}_2 = \{x_1 + x_2 : x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2\}.$ (e) If $\mathcal{X} \subseteq \mathbb{R}^d$ is a convex set and A is a matrix, then $\{Ax : x \in \mathcal{X}\}$ is convex.

 - (f) If $\mathcal{Y} \subseteq \mathbb{R}^m$ is a convex set and A is a matrix, then $\{x \in \mathbb{R}^d : Ax \in \mathcal{Y}\}$ is convex.
 - (g) The set $\{Ax \colon x \in \mathcal{X}\}$ is not necessarily closed, even when \mathcal{X} is closed.
 - (h) A convex set $\mathcal{X} \subseteq \mathbb{R}^d$ has a convex closure.
 - (i) Let \mathcal{X} be a closed convex set and let $x \in \mathcal{X}$. Show that $\mathcal{N}_{\mathcal{X}}(x)$ is a closed convex cone, meaning $\mathcal{N}_{\mathcal{X}}(x)$ is closed and convex and for all $v \in \mathcal{N}_{\mathcal{X}}(x)$ and $t \geq 0$, the inclusion $tv \in \mathcal{N}_{\mathcal{X}}(x)$ holds.
- 2. Consider the ℓ_1 ball:

$$\mathcal{X} := \left\{ x \in \mathbb{R}^d \colon \sum_{i=1}^d |x_i| \le 1 \right\}.$$

- (a) Prove that \mathcal{X} is a *polyhedron* (i.e., the intersection of finitely many linear inequalities, meaning $\mathcal{X} = \{x \in \mathbb{R}^d : a_i^T x \leq b_i \text{ for } i = 1, \dots, n\}$ for a set of vectors a_i and scalars b_i). How many inequalities are needed to describe \mathcal{X} (how large is n)?
- (b) A *lifting* of a polyhedron $\mathcal{P}_1 \subseteq \mathbb{R}^d$ is a description of the form $\mathcal{P}_1 = \{Ax \colon x \in \mathcal{P}_2\}$ where $\mathcal{P}_2 \subseteq \mathbb{R}^m$ is a polyhedron and $A \in \mathbb{R}^{d \times m}$ is a matrix. Find a lifting of \mathcal{X} to \mathbb{R}^{2d} , where the associate polyhedron in \mathbb{R}^{2d} is defined by at most 2d + 1 inequalities.
- 3. Calculate the normal cones of the following sets:
 - (a) $\mathcal{X} = a$ subspace of \mathbb{R}^d .
 - (b) $\mathcal{X} = B_1(0)$ (closed unit ball in \mathbb{R}^d)

 - (c) $\mathcal{X} = \mathbb{R}^{d}_{+} = \{x \in \mathbb{R}^{d} : x_{i} \geq 0 \text{ for } i = 1, \dots, d\}.$ (d) $\mathcal{X} = \{x \in \mathbb{R}^{d} : Ax = b\}$ where $b \in \mathbb{R}^{m}$ and $A \in \mathbb{R}^{m \times d}$ is a matrix.
- 4. Let $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a convex function. Prove that any local minimum of f is a global minimum.
- 5. (Weierstrass) Let $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a function that has a closed epigraph and bounded sublevel sets. Show that f has a minimizer. (Hint: consider the epigraphical form from Section 2.2.1 of the course lecture notes.)
- 6. (The Rayleigh Quotient; see Exercise 6 of Chapter 2.1 in Borwein and Lewis.)
 - (a) Let $f: \mathbb{R}^d \setminus \{0\} \to \mathbb{R} \cup \{+\infty\}$ be continuous, satisfying $f(\lambda x) = f(x)$ for all $\lambda > 0$ in \mathbb{R} and nonzero x in \mathbb{R}^d . Prove f has a minimizer.

- (b) Given a symmetric matrix $A \in \mathbb{R}^{d \times d}$, define a function $g(x) = x^T A x / ||x||^2$ for nonzero $x \in \mathbb{R}^d$. Prove that g has a minimizer.
- (c) Calculate $\nabla g(x)$ for nonzero x.
- (d) Deduce that minimizers of g must be eigenvectors, and calculate the minimum value.

Your homework partly relies on the following definition:

Definition 2.1 (Dual Cone). Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a cone. Then the dual cone of \mathcal{K} is the set

$$\mathcal{K}^* := \{ s \in \mathbb{R}^d \colon \langle x, s \rangle \ge 0 \quad \forall x \in \mathcal{K} \}.$$

Please complete the following exercises.

1. Prove the following:

- (a) The closure of any cone must contain the origin.
- (b) The intersection of two cones is a cone.
- (c) The Cartesian product of two cones is a cone.
- (d) If $\mathcal{K}_1, \mathcal{K}_2 \subseteq \mathbb{R}^d$ are cones, then $\mathcal{K}_1 + \mathcal{K}_2$ is a cone. (e) A cone $\mathcal{K} \subseteq \mathbb{R}^d$ is convex if and only if $\mathcal{K} + \mathcal{K} = \mathcal{K}$.

Suppose $A \in \mathbb{R}^{m \times d}$ is a matrix.

- (f) If $\mathcal{K} \subseteq \mathbb{R}^d$ is a cone, then $\{Ax \colon x \in \mathcal{K}\}$ is a cone in \mathbb{R}^m .
- (g) If $\mathcal{K}' \subset \mathbb{R}^m$ is a cone, then $\{x \colon Ax \in \mathcal{K}'\}$ is a cone in \mathbb{R}^d .
- (h) Give an example of a closed convex cone $\mathcal{K} \subseteq \mathbb{R}^d$ and a matrix $A \in \mathbb{R}^{m \times d}$ such that the set $\{Ax \colon x \in \mathcal{K}\}$ is not closed.
- (a) Suppose \mathcal{X} is a closed convex set. Prove that 2.

$$\mathcal{K}_{\mathcal{X}} = \{(x,t) \colon t > 0 \text{ and } x/t \in \mathcal{X}\}$$

is a convex cone.

- (b) If \mathcal{X} is bounded, show that $\overline{\mathcal{K}}_{\mathcal{X}} = \mathcal{K}_{\mathcal{X}} \cup \{(0,0)\}.$
- (c) Give an example of a closed convex set \mathcal{X} for which $\overline{\mathcal{K}}_{\mathcal{X}} \neq \mathcal{K}_{\mathcal{X}} \cup \{(0,0)\}$.
- 3. Let \mathcal{K} be a polyhedral cone.¹ Prove that \mathcal{K}^* is also polyhedral.
- 4. Prove that each of the following cones \mathcal{K} are *self-dual*, meaning $\mathcal{K} = \mathcal{K}^*$.
 - (a) \mathbb{R}^d_+
 - (b) SOC(d+1)
 - (c) $\mathbb{S}^{d \times d}_+$
- 5. Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a closed convex set. For any $x \in \mathcal{X}$, define the proximal normal cone

$$\mathcal{N}_{\mathcal{X}}^{P}(x) = \left\{ v \in \mathbb{R}^{d} \colon x = \operatorname{proj}_{\mathcal{X}}(x+v) \right\}$$

Prove that $\mathcal{N}_{\mathcal{X}}(x) = \mathcal{N}_{\mathcal{X}}^{P}(x).$

¹The term polyhedral means the cone is defined by finitely many linear inequalities.

1. (Normal Cone to A Cone.) Let $\mathcal{K} \subseteq \mathbb{R}^m$ be a convex cone. Prove that

$$\mathcal{N}_{\mathcal{K}}(x) = -\mathcal{K}^* \cap \{x\}^{\perp} \qquad \forall x \in \mathcal{K}.$$

2. (A Compressive Sensing Problem.) Consider the following optimization problem

$$\begin{array}{l} \text{minimize } \|x\|_1\\ \text{subject to: } Ax = b \end{array}$$

(The symbol $||x||_1$ denotes the ℓ_1 norm on \mathbb{R}^d , a particular member of the family of ℓ_p norms defined as follows: for any $p \in [1, \infty)$, we define

$$||x||_p^p := \sum_{i=1}^d |x_i|^p \qquad \forall x \in \mathbb{R}^d.$$

If $p = \infty$, we define $||x||_{\infty} := \max_{i=1,\dots,d} |x_i|$ for all $x \in \mathbb{R}^d$.)

- (a) Write an equivalent linear programming formulation of this problem.
- (b) Take the dual of the linear program from part 2a.
- (c) Prove that the linear program from part 2b is equivalent to the following problem

maximize
$$\langle y, b \rangle$$

subject to: $||A^T y||_{\infty} \leq 1$.

3. (Failure Cases.)

- (a) Give an example of a linear program where $val = +\infty$ and $val^* = -\infty$.
- (b) Give an example of a conic program where val is finite but not attained.
- (c) Give an example of a conic program where $val = +\infty$, but val^* is finite.
- (d) Give an example of a conic program where $val, val^* \in \mathbb{R}$ and $val \neq val^*$.
- 4. (Closed Functions.) Let $f : \mathbb{R}^d \to [-\infty, +\infty]$ be an extended valued function.
 - (a) Prove there exists a unique function $\operatorname{cl} f : \mathbb{R}^d \to [-\infty, +\infty]$, called the *closure* of f, satisfying

$$\operatorname{epi}(\operatorname{cl} f) = \operatorname{epi}(f).$$

Moreover, prove the closure satisfies the following limiting formula:

$$\operatorname{cl} f(x) = \lim_{\varepsilon \to 0} \inf_{y \in B_{\varepsilon}(x)} f(y).$$
(3.1)

(b) Suppose f is convex. Prove that cl f is convex.

Def. An extended-valued function is *closed* if epi(f) is closed.

- (c) Prove that $\operatorname{cl} f$ is closed.
- (d) Prove that $\operatorname{cl} f(x) \leq f(x)$ for all $x \in \mathbb{R}^d$.

- (e) Suppose f is continuous. Prove that f closed.
- (f) Suppose that f is continuous at a point $x \in \mathbb{R}^d$. Prove that $f(x) = \operatorname{cl} f(x)$. (In other words,

$$f(x) = \lim_{\varepsilon \to 0} \inf_{y \in B_{\varepsilon}(x)} f(y).)$$

(g) Suppose that for all $x \in \mathbb{R}^d$, we have

$$f(x) = \lim_{\varepsilon \to 0} \inf_{y \in B_{\varepsilon}(x)} f(y).$$

Prove that f is closed. (Such functions are called lower semicontinuous.)

- (h) Give an example of a closed extended valued function such that dom $(f) = \{x: f(x) < +\infty\}$ is open.
- 5. (Strong Duality.) Let $A \in \mathbb{R}^{m \times d}$, let $c \in \mathbb{R}^d$, and let $\mathcal{K} \subseteq \mathbb{R}^d$ be a closed convex cone. Consider the family of primal and dual conic problems, which both depend on a parameter $b \in \mathbb{R}^m$:

$$\underbrace{\left\{\begin{array}{l} \text{minimize } c^T x\\ \text{subject to: } Ax = b\\ x \in \mathcal{K} \end{array}\right\}}_{\mathcal{P}(b)} \qquad \qquad \underbrace{\left\{\begin{array}{l} \text{maximize } b^T x\\ \text{subject to: } c - A^T y \in \mathcal{K}^* \right\}}_{\mathcal{D}(b)} \end{array}$$
(3.2)

Recall the value function $val: \mathbb{R}^m \to [-\infty, \infty]$

$$\operatorname{val}(b) = \inf\{c^T x \colon Ax = b, x \in \mathcal{K}\} \quad \forall b \in \mathbb{R}^m,$$

and the asymptotic value function \mathbf{a} -val: $\mathbb{R}^m \to [-\infty, \infty]$

$$a-val = clval.$$

- (a) Suppose there is a point $b \in \mathbb{R}^m$ such that $val(b) = a-val(b) \in \mathbb{R}$. Prove that $val(b') > -\infty$ for all $b' \in \mathbb{R}^m$.
- (b) Give an example of a conic program and a vector b such that the $val(b) = +\infty$ and $a-val(b) < +\infty$.
- (c) Suppose that val is continuous at a point $b \in \mathbb{R}^m$. Prove that strong duality holds:

$$val(b) = \sup\{b^T y \colon c - A^T y \in \mathcal{K}^*\}.$$

(d) Prove that val is convex. Is a-val convex?

Consider the following basic property of convex functions:

Theorem 3.1 (Borwein and Lewis Theorem 4.1.3). Let $f: \mathbb{R}^d \to (-\infty, +\infty]$ be a convex function. Then f is continuous on the interior of its domain.²

Notice that the function f in the above theorem never takes value $-\infty$.

²Recall that dom $(f) = \{x \colon f(x) < +\infty\}.$

(e) We say that P(b) is strongly feasible if there exists an ε > 0 such that for all b' ∈ B_ε(b) the perturbed problem P(b') is feasible.
Suppose that P(b) is strongly feasible. Then show that strong duality holds:

$$val(b) = \sup\{b^T y \colon c - A^T y \in \mathcal{K}^*\}.$$

(f) (Slater's Condition.) If $\mathcal{P}(b)$ has a feasible point x lying in the interior of \mathcal{K} and if rank(A) = m, prove that strong duality holds:

$$val(b) = \sup\{b^T y \colon c - A^T y \in \mathcal{K}^*\}.$$

(Note that it is very common to assume $\operatorname{rank}(A) = m$ in the optimization literature, and we can assume this without loss of generality. Indeed, if A is not full rank, we can simply row reduce the system and form a new problem with the row reduced matrix. Clearly, any solution to the new problem still solves the original one.)

1. (Extreme Points.)

- (a) Give an example of a polyhedron with no extreme points.
- (b) Prove that any nonempty polyhedron in standard form $P = \{x : Ax = b, x \ge 0\}$ has at least one extreme point.
- 2. (Polyhedral Functions.) We call a function $f : \mathbb{R}^d \to (-\infty, \infty]$ polyhedral if epi(f) is polyhedral. Prove that any polyhedral function f admits the representation:

$$f(x) = \max_{i=1,\dots,n} \{a_i^T x + b_i\} + \delta_{\mathcal{X}}(x), \qquad \forall x \in \mathbb{R}^d$$

where $n \ge 0$, $\mathcal{X} \subseteq \mathbb{R}^d$ is a polyhedral set, and for $i = 1, \ldots, n$, we have $a_i \in \mathbb{R}^d$ and $b_i \in \mathbb{R}$. (Hint: write $f(x) = \inf\{t: (x, t) \in \operatorname{epi}(f)\}$.) Does the value function of a polyhedral program admit such a representation? Justify your answer.

3. (Strict Complementary Slackness.) In this exercise, we examine the strict complementary slackness condition. To that end consider the following primal-dual pair of linear programs:

> minimize $c^T x$ subject to: Ax = b $x \in \mathbb{R}_+$ maximize $b^T x$ subject to: $A^T y + s - c = 0$ (4.1)

Throughout this exercise, we suppose that optimal solutions exist. Consider the following condition.

Condition. Suppose that there is some $j \in \{1, \ldots, d\}$ so that every optimal solution x^* satisfies $x_i^* = 0$.

In the next three parts, suppose the above condition holds. Under this condition, we will prove there is a dual optimal pair (y, s) with $s_i > 0$.

(a) Consider the following linear program:

minimize
$$-x_j$$

subject to: $Ax = b$
 $c^T x \leq val$
 $x \geq 0.$

Show that its dual is

maximize
$$b^T y - t \text{val}$$

subject to: $A^T y - tc + s = -e_j$
 $s, t \ge 0,$

where e_j denotes the *j*th standard basis vector. Prove that this dual has an optimal solution $(\bar{y}, \bar{t}, \bar{s})$ and show that $b^T \bar{y} = \bar{t}$ val.

- (b) Suppose $\bar{t} > 0$ and let $y = \bar{y}/t$ and $s = (\bar{s} + e_j)/\bar{t}$. Prove that $s_j > 0$ (obvious) and (y, s) solves the original dual problem.
- (c) Suppose that $\bar{t} = 0$. Find an optimal solution (y, s) to the original dual problem with $s_j > 0$.

Using the above results, we can construct a primal-dual pair satisfying the strict complementary slackness condition. To that end, define a subset of indices $J \subseteq \{1, \ldots, d\}$ by the following formula

 $J := \{j \colon \exists \text{ primal optimal } x \text{ with } x_j > 0\}.$

Using J, we will construct a sequence $(x^1, y^1), \ldots, (x^d, y^d)$ of primal-dual optimal pairs with the following properties: For each $j \in J$, we let y^j be an arbitrary dual optimal solution and let x^j be a primal optimal solution with $x_j^j > 0$. On the other hand, for each $j \notin J$, we let x^j be an arbitrary primal optimal solution and let y^j be a dual optimal optimal solution with $(c - A^T y^j)_j > 0$ (exists by Parts 1-3). Given these primal-dual optimal pairs, define

$$x^* := \frac{1}{d} \sum_{j=1}^d x^j$$
 and $y^* := \frac{1}{d} \sum_{j=1}^d y^j$.

(d) **Bonus.** Show that the pair (x^*, y^*) is primal-dual optimal and in addition satisfies strict complementary slackness, namely,

$$x_j^* > 0$$
 if and only if $(c - A^T y^*)_j = 0, \quad \forall j$

4. (A Closed Value Function.) Prove that val : $\mathbb{R}^d \to (-\infty, +\infty]$ is closed if for every $\gamma, \tau \in \mathbb{R}$, the set

$$\{x \colon c^T x \le \gamma, \|Ax\| \le \tau, x \in \mathcal{K}\}\$$

is bounded. Under this condition, prove that whenever val(b) is finite, strong duality holds ($val = val^*$) and there exists a primal optimal solution.

5. Prove the following Lemma:

Lemma 4.1 (Fréchet Subgradients of Convex Functions). Let $f : \mathbb{R}^d \to (-\infty, \infty]$ be a convex function. Then

$$\partial_F f(x) = \left\{ v \colon f(y) \ge f(x) + \langle v, y - x \rangle, \quad \forall y \in \mathbb{R}^d \right\}, \qquad \forall x \in \operatorname{dom}(f).$$

Equivalently, $v \in \partial_F f(x)$ if and only if $f(y) - \langle v, y \rangle$ is minimized at x.

6. (Fermat's Rule.) Prove the following Theorem

Theorem 4.2 (Fermat's Rule). Let $f : \mathbb{R}^d \to (-\infty, \infty]$ be a proper function and suppose that \bar{x} is a local minimizer of f. Then

$$0 \in \partial_F f(\bar{x}).$$

If moreover f is convex, the condition $0 \in \partial f(x)$ is both necessary and sufficient for x to be a global minimum.

7. (Mean Value Theorem.) Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is a closed convex function and let $x, y \in \mathbb{R}^d$. Show that there exists $t \in [0, 1]$ such that

$$f(x) - f(y) \in \langle x - y, \partial f((1 - t)x + ty) \rangle$$

(Hint: consider the convex function $t \mapsto f((1-t)x+ty)+t(f(x)-f(y))$ on the compact interval [0, 1].)

The next exercise relies on the following definition.

Definition 4.3 (Lipschitz Continuity). A function $f : \mathbb{R}^d \to \mathbb{R}$ is called Lipschitz continuous if

$$|f(x) - f(y)| \le L ||x - y||, \qquad \forall x, y \in \mathbb{R}^d.$$

for some L > 0. The constant L is called a Lipschitz constant of f.

8. (Lipschitz Continuity.) Let $f : \mathbb{R}^d \to \mathbb{R}$ be a closed convex function. Show that f is Lipschitz continuous with Lipschitz constant L if and only if for all $x \in \mathbb{R}^d$, it holds

$$v \in \partial f(x) \implies ||v|| \le L$$

- 1. Consider the simplex method applied to a standard form problem. Assume that the rows of the matrix A are linearly independent. Prove or disprove the following.
 - (a) A variable that just left the basis cannot reenter in the very next iteration (under any choice of pivoting rule).
 - (b) A variable that just entered the basis cannot leave in the very next iteration (under any choice of pivoting rule).
 - (c) If there is a nondegenerate optimal solution, then there exists a unique optimal basis.
 - (d) If x is an optimal solution, no more than m of its components can be positive, where m is the number of equality constraints.
- 2. $\stackrel{\text{\tiny D}}{\Rightarrow}$ Consider a polyhedron in standard form $\{x \colon Ax = b, x \ge 0\}$ and let x, y be two different basic feasible solutions. If we are allowed to move from any basic feasible solution to an adjacent one in a single step, show that we can go from x to y in a finite number of steps.
- 3. Convex Hulls. Let $\mathcal{X} \subseteq \mathbb{R}^d$. We define the convex hull to be the smallest convex set containing \mathcal{X} and denote this set by $\operatorname{conv}(\mathcal{X})$. Here, the word "smallest" means that whenever a convex set $\mathcal{Y} \subseteq \mathbb{R}^d$ contains \mathcal{X} , it must be the case that \mathcal{Y} contains $\operatorname{conv}(\mathcal{X})$ as well. Prove that

$$\operatorname{conv}(\mathcal{X}) = \left\{ x \in \mathbb{R}^d \colon x = \sum_{i=1}^{n_x} \alpha_i x_i \text{ for some } n_x > 0, \, x_i \in \mathcal{X}, \, \text{and } \alpha_i \in [0,1] \text{ with } \sum_{i=1}^{n_x} \alpha_i = 1 \right\}.$$

4. Easy Subdifferential Facts.

- (a) Let $f \colon \mathbb{R}^d \to (-\infty, \infty]$ be a closed, proper, convex function. Show that for all $x \in \text{dom}(f)$, the set $\partial f(x)$ is closed and convex.
- (b) Let $d = d_1 + \ldots + d_n$ for integers d_i and let $f_i \colon \mathbb{R}^{d_i} \to (-\infty, +\infty]$ be proper convex functions. Then

$$\partial (f_1 + \ldots + f_n)(x_1, \ldots, x_n) = \partial f_1(x_1) \times \ldots \times \partial f_n(x_n) \qquad \forall x_i \in \operatorname{dom}(f_i)$$

(c) Let $f : \mathbb{R}^d \to (-\infty, \infty]$ be a closed, proper, convex function and let $\lambda > 0$. Then prove that the function $g = \lambda f$ is satisfies

$$\partial g(x) = \lambda \partial f(x), \qquad \forall x \in \operatorname{dom}(f).$$

(d) Let $f : \mathbb{R}^d \to (-\infty, \infty]$ be a closed, proper, convex function and let $b \in \mathbb{R}^d$. Then prove that the shifted function $g(\cdot) = f((\cdot) + b)$ satisfies

$$\partial g(x) = \partial f(x+b), \quad \forall x \in \operatorname{dom}(f) - \{b\}.$$

- 5. Compute the subdifferentials of the following functions on \mathbb{R}^d (some are differentiable, others are easy applications of the chain rule/the easy from subdifferential facts in Exercise 4):

 - (a) ℓ_1 norm. $f(x) = ||x||_1 = \sum_{i=1}^d |x_i|$. (b) Hinge loss. $f(x) = \max\{0, x\}$ (where d = 1).
 - (c) Hybrid Norm. $f(x) = \sqrt{1 + x^2}$ (where d = 1).
 - (d) Logistic function. $f(x) = \log(1 + \exp(x))$ (where d = 1).
 - (e) Indicator of ℓ_p ball. $\stackrel{\text{\tiny def}}{\simeq} f(x) = \delta_{\mathcal{X}}(x)$ where for $p \in [1, \infty]$ and $\tau > 0$, we have $\mathcal{X} = \{ x \colon \|x\|_p \le \tau \}.$
 - (f) Max of coordinates. $\stackrel{\text{\tiny W}}{\Rightarrow} f(x) = \max\{x_1, \dots, x_d\}.$
 - (g) Polyhedral Function. $f(x) = \max_{i \le m} \{ \langle a_i, x \rangle + b_i \}$ where $a_1, \ldots, a_m \in \mathbb{R}^d$ are vectors and $b_1, \ldots, b_m \in \mathbb{R}$

 - (h) Quadratic. $f(x) = \frac{1}{2} \langle Ax, x \rangle$ for some symmetric matrix $A \in \mathbb{R}^{d \times d}$. (i) Least Squares. $f(x) = \frac{1}{2} ||Ax b||_2^2$ where $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$. (j) Least Absolute Deviations. $f(x) = ||Ax b||_1$ where $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$.

6. Descent Directions

(a) $\stackrel{\text{\tiny def}}{\Rightarrow}$ Suppose that f is Fréchet differentiable on \mathbb{R}^d and that $\nabla f(x)$ is a continuous function of x. Show that for all $x \in \mathbb{R}^d$ with $\nabla f(x) \neq 0$, there exists $\gamma > 0$ such that

$$f(x - \gamma \nabla f(x)) < f(x).$$

(**Hint:** Consider the derivative of the one variable function $g(\gamma) = f(x - \gamma \nabla f(x))$.)

(b) Consider a convex function f(x, y) = a|x| + b|y| for scalars a, b > 0. Find a point $(x_0, y_0) \in \mathbb{R}^2$, coefficients a, b > 0, and a subgradient $v \in \partial f(x, y)$ so that

$$f((x_0, y_0) - \gamma v) > f(x_0, y_0) \quad \forall \gamma > 0.$$

(c) $\stackrel{\text{\tiny III}}{\hookrightarrow} \stackrel{\text{\tiny IIII}}{\hookrightarrow}$ Let f be a continuous convex function. Let $x \in \mathbb{R}^d$ and suppose that $0 \notin \partial f(x)$. In this exercise, we will show that the minimal norm subgradient of f at x

$$v := \operatorname{proj}_{\partial f(x)}(0).$$

is a descent direction.

i. Show that

$$\langle w, -v \rangle \le - \|v\|^2 \qquad \forall w \in \partial f(x).$$

ii. Next, define the one variable continuous convex function $g(\gamma) = f(x - \gamma v)$. Show that

$$\eta \in \partial g(0) \implies \eta < -\|v\|^2.$$

Can 0 be a minimizer of q?

- iii. Show that for all $\gamma < 0$, we have $g(\gamma) > g(0)$.
- iv. Use parts (b) and (c) to show that for $g(\gamma) < g(0)$ for all sufficiently small $\gamma > 0.$

- 7. Prove the following propositions.
 - (a) **Clipped/Bundle Models.** Let $x \in \mathbb{R}^d$ and suppose that f_x is an (l, q) model of f at x. Moreover, assume that $g \colon \mathbb{R}^d \to (-\infty, \infty]$ is closed, proper, convex, and dominated by $f \colon g(y) \leq f(y)$ for all $y \in \mathbb{R}^d$. Then

$$\max\{f_x, g\}$$

is an (l, q)-model of f at x.

(b) **Projected/Proximal Models.** Suppose that f admits the decomposition

$$f = g + h,$$

where $g, h : \mathbb{R}^d \to (-\infty, \infty]$ are closed, proper, convex functions. Let $x \in \mathbb{R}^d$ and suppose that g_x is an (l, q) model of g at x. Then

 $g_x + h$

is an (l,q)-model of f at x.

(c) Max-Linear Models. Suppose that f admits the decomposition

$$f = \max(f_1, \ldots, f_n),$$

where for each i, the function $f_i : \mathbb{R}^d \to (-\infty, \infty]$ is closed, proper, and convex. Let $x \in \mathbb{R}^d$ and suppose for each i, the function $(f_i)_x$ is an (l, q) model of f_i at x. Then

$$\max\{(f_1)_x,\ldots,(f_n)_x\}$$

is an (l,q)-model of f at x.

8. Clipping subproblem. $\overset{\text{\tiny W}}{\Rightarrow} \overset{\text{\tiny W}}{\Rightarrow} \text{Let } a, x \in \mathbb{R}^d$, let $1b \in \mathbb{R}$, let $\rho > 0$, and let $b \in \mathbb{R}$. Prove that the point

$$x_{+} = \operatorname*{argmin}_{y \in \mathbb{R}^{d}} \left\{ \max\{\langle a, y \rangle + b, \mathtt{lb}\} + \frac{\rho}{2} \|y - x\|^{2} \right\}$$

satisfies

$$x_{+} = x - \operatorname{clip}\left(\frac{\rho}{\|a\|^{2}}(\langle a, x \rangle + b - \operatorname{lb})\right) \frac{a}{\rho} \quad \text{where} \quad \operatorname{clip}(t) = \max\{\min\{t, 1\}, 0\}.$$

(Hint: use first order optimality conditions.)

In this homework we study the core algorithmic subproblem in *proximal algorithms*. For motivation recall the *proximal subgradient method* from lecture. This is perhaps the most common algorithm one encounters in first-order methods, so you should at least have a working knowledge of how to implement its steps, when possible. In general it can be quite hard to implement these steps. Indeed, the subproblem includes as a special case the projection of a vector onto a convex set, a generally difficult task. Still for a few useful functions we can implement these steps, even with simple closed form expressions.

1. Let $f: \mathbb{R}^d \to (-\infty, \infty]$ be a closed, proper, convex function. Let $\gamma > 0$ and define the proximal operator $\operatorname{prox}_{\gamma f}: \mathbb{R}^d \to \mathbb{R}^d$:

$$\operatorname{prox}_{\gamma f}(x) = \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ f(y) + \frac{1}{2\gamma} \|y - x\|^2 \right\}.$$

(a) Prove that for all $x \in \mathbb{R}^d$, we have

$$x_{+} = \operatorname{prox}_{\gamma f}(x) \iff (x - x_{+}) \in \gamma \partial f(x_{+})$$

(**Hint:** use strong convexity.)

- (b) Prove that $x \in \mathbb{R}^d$ is minimizes f if and only if $x = \operatorname{prox}_{\gamma f}(x)$.
- (c) (Minty's Theorem.) Prove that

$$\operatorname{range}(I + \partial f) = \{x + v \colon v \in \partial f(x)\} = \mathbb{R}^d.$$

(Hint: use part (a).)

(d) $\stackrel{\text{\tiny III}}{\simeq}$ Prove that $\operatorname{prox}_{\gamma f}$ is 1-Lipschitz, i.e.,

 $\|\operatorname{prox}_{\gamma f}(x) - \operatorname{prox}_{\gamma f}(y)\| \le \|x - y\|, \quad \forall x, y \in \mathbb{R}^d.$

(**Hint:** use strong convexity.)

Notice the relation between proximal and projection operators: If $f(x) = \delta_{\mathcal{X}}$ for a closed convex set \mathcal{X} , then $\operatorname{prox}_{\gamma f} = \operatorname{proj}_{\mathcal{X}}$ for all $\gamma > 0$.

2. Calculus of Proximal Operators.

(a) **(Linear Perturbation.)** Suppose that $f : \mathbb{R}^d \to (-\infty, \infty]$ is closed, proper, and convex, let $\gamma > 0$, and let $b, v \in \mathbb{R}^d$. Define a function

$$g(x) = f(x+b) + v^T x, \qquad \forall x \in \mathbb{R}^d$$

Prove that

$$\operatorname{prox}_{\gamma g}(x) = \operatorname{prox}_{\gamma f}(x - \gamma v + b) - b, \quad \forall x \in \mathbb{R}^{d}$$

(**Hint:** First try the cases where b = 0 or v = 0.)

(b) (Separability.) Let $d = d_1 + \ldots + d_n$ for integers d_i and let $f_i \colon \mathbb{R}^{d_i} \to (-\infty, +\infty]$ be proper convex functions. Let $\gamma > 0$ and for all $x = (x_1, \ldots, x_n) \in \mathbb{R}^d$, define $f(x_1, \ldots, x_n) := \sum_{i=1}^n f(x_i)$. Prove that

$$\operatorname{prox}_{\gamma f}(x_1, \dots, x_n) = (\operatorname{prox}_{\gamma f}(x_1), \dots, \operatorname{prox}_{\gamma f_n}(x_n)), \quad \forall x \in \mathbb{R}^d$$

(c) (Scalarization.) $\stackrel{\text{\tiny III}}{\simeq}$ Let $f \colon \mathbb{R} \to (-\infty, \infty]$ be a scalar function, let $\gamma > 0$, and let $a \in \mathbb{R}^d \setminus \{0\}$. Define

$$g(x) = f(a^T x), \qquad \forall x \in \mathbb{R}^d$$

Prove that for all $x \in \mathbb{R}^d$, we have

$$\operatorname{prox}_{\gamma g}(x) = x - \rho a$$
 where $\rho = \frac{1}{\|a\|^2} (a^T x - \operatorname{prox}_{(\gamma \|a\|^2)f}(a^T x)).$

(**Hint:** Be careful: the chain rule $\partial g(y) = a \partial f(a^T y)$ may not hold. Instead, use the inclusion $a \partial f(a^T y) \subseteq \partial g(y)$.)

- 3. **Proximal Operator Examples.** Compute the proximal operators of the following functions
 - (a) $f(x) := ||x||_1 = \sum_{i=1}^d |x_i|.$
 - (b) $f(x) = \max\{0, x\}$ for a scalar variable $x \in \mathbb{R}$.
 - (c) $f(x) = \frac{1}{2} \langle Ax, x \rangle \langle b, x \rangle$, where $b \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times d}$ is a symmetric positive semidefinite matrix.
 - (d) f(x) = ||x||₂.
 (Hint: First compute the subdifferential of f, keeping in mind that f is differentiable everywhere except the origin.)
 - (e) $f(x) = \delta_{\mathcal{X}}$, where $\mathcal{X} = \{x \in \mathbb{R}^d : x \ge 0\}$ is the nonnegative orthant.
 - (f) $f(x) = \delta_{\mathcal{X}}$, where $\mathcal{X} = \{x \colon Ax = b\}$ is an affine space defined by matrix $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$.
 - (g) $f(x) = \delta_{\mathcal{X}}$, where $\mathcal{X} = \{x : ||x||_{\infty} \le 1\}$ (**Hint:** You already computed $\partial f(x)$ on a previous homework assignment.)
- 4. (Projection onto $\mathbb{S}^{d \times d}_+$). Recall that any symmetric matrix $A \in \mathbb{S}^{d \times d}$ (not necessarily positive semidefinite) has an eigenvalue decomposition

$$A = Q\Lambda Q^T \qquad \text{where} \left\{ \begin{array}{l} Q^T Q = I \\ \Lambda = \text{diag}(\lambda_1, \dots, \lambda_d) \\ \lambda_1 \ge \dots \ge \lambda_d. \end{array} \right\}.$$

For any such matrix, prove that

$$\operatorname{proj}_{\mathbb{S}^{d \times d}_{+}}(A) = Q \max\{\Lambda, 0\} Q^{T}.$$

(**Hint:** Verify the first order optimality conditions $A - \operatorname{proj}_{\mathbb{S}^{d \times d}_{+}}(A) \in \mathcal{N}_{\mathbb{S}^{d \times d}_{+}}(\operatorname{proj}_{\mathbb{S}^{d \times d}_{+}}(A))$)

Finally consider the following problem on sensitivity analysis for linear programs.

- 5. $\overset{\text{denote an optimal}}{\Rightarrow}$ Consider the linear program $\min(c^T x : x \ge 0, Ax = b)$. Let *B* denote an optimal basis. Assume that the problem is generic in that each vertex has a unique basis for which it is the corresponding basic solution. Suppose now that you want to solve a parametric problem, i.e., a set of problems of the form $\min((c+\lambda d)^T x : x \ge 0, Ax = b)$, for each possible value of $\lambda \ge 0$. Assume that for any $\lambda \ge 0$ the problem has an optimal solution and that the basis *B* is a solution for the problem when $\lambda = 0$.
 - (a) Prove that the set of values of λ for which basis B is optimal forms an interval $[0, a_1]$. Explain how to compute a_1 .
 - (b) Show that there is a finite set $a_0 = 0 \le a_1 \le \dots \le a_k$ and corresponding bases B_i for $i = 0, \dots, k$ such that $B_0 = B$ and B_i (for $i = 0, \dots, k$) is the optimal basis if and only if $\lambda \in [a_i, a_{i+1}]$, and B_k is optimal if $\lambda \ge a_k$.