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1 Homework 1

1. Prove the following basic consequences of convexity:

(a) The set of optimal solutions to a convex program is convex.
(b) Intersections of convex sets are convex.
(c) Cartesian products of convex sets are convex.
(d) If X1 and X2 are convex, then so is X1 + X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.
(e) If X ⊆ Rd is a convex set and A is a matrix, then {Ax : x ∈ X} is convex.
(f) If Y ⊆ Rm is a convex set and A is a matrix, then {x ∈ Rd : Ax ∈ Y} is convex.
(g) The set {Ax : x ∈ X} is not necessarily closed, even when X is closed.
(h) A convex set X ⊆ Rd has a convex closure.
(i) Let X be a closed convex set and let x ∈ X . Show that NX (x) is a closed convex

cone, meaning NX (x) is closed and convex and for all v ∈ NX (x) and t ≥ 0, the
inclusion tv ∈ NX (x) holds.

2. Consider the `1 ball:

X :=

{
x ∈ Rd :

d∑
i=1

|xi| ≤ 1

}
.

(a) Prove that X is a polyhedron (i.e., the intersection of finitely many linear inequal-
ities, meaning X = {x ∈ Rd : aTi x ≤ bi for i = 1, . . . , n} for a set of vectors ai and
scalars bi). How many inequalities are needed to describe X (how large is n)?

(b) A lifting of a polyhedron P1 ⊆ Rd is a description of the form P1 = {Ax : x ∈ P2}
where P2 ⊆ Rm is a polyhedron and A ∈ Rd×m is a matrix.

Find a lifting of X to R2d, where the associate polyhedron in R2d is defined by at
most 2d+ 1 inequalities.

3. Calculate the normal cones of the following sets:

(a) X = a subspace of Rd.
(b) X = B1(0) (closed unit ball in Rd)
(c) X = Rd

+ = {x ∈ Rd : xi ≥ 0 for i = 1, . . . , d}.
(d) X = {x ∈ Rd : Ax = b} where b ∈ Rm and A ∈ Rm×d is a matrix.

4. Let f : Rd → R ∪ {+∞} be a convex function. Prove that any local minimum of f is
a global minimum.

5. (Weierstrass) Let f : Rd → R ∪ {+∞} be a function that has a closed epigraph and
bounded sublevel sets. Show that f has a minimizer. (Hint: consider the epigraphical
form from Section 2.2.1 of the course lecture notes.)

6. (The Rayleigh Quotient; see Exercise 6 of Chapter 2.1 in Borwein and Lewis.)

(a) Let f : Rd\{0} → R∪ {+∞} be continuous, satisfying f(λx) = f(x) for all λ > 0
in R and nonzero x in Rd. Prove f has a minimizer.
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(b) Given a symmetric matrix A ∈ Rd×d, define a function g(x) = xTAx/‖x‖2 for
nonzero x ∈ Rd. Prove that g has a minimizer.

(c) Calculate ∇g(x) for nonzero x.

(d) Deduce that minimizers of g must be eigenvectors, and calculate the minimum
value.
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2 Homework 2

Your homework partly relies on the following definition:

Definition 2.1 (Dual Cone). Let K ⊆ Rd be a cone. Then the dual cone of K is the set

K∗ := {s ∈ Rd : 〈x, s〉 ≥ 0 ∀x ∈ K}.

Please complete the following exercises.

1. Prove the following:

(a) The closure of any cone must contain the origin.
(b) The intersection of two cones is a cone.
(c) The Cartesian product of two cones is a cone.
(d) If K1,K2 ⊆ Rd are cones, then K1 +K2 is a cone.
(e) A cone K ⊆ Rd is convex if and only if K +K = K.

Suppose A ∈ Rm×d is a matrix.

(f) If K ⊆ Rd is a cone, then {Ax : x ∈ K} is a cone in Rm.
(g) If K′ ⊆ Rm is a cone, then {x : Ax ∈ K′} is a cone in Rd.
(h) Give an example of a closed convex cone K ⊆ Rd and a matrix A ∈ Rm×d such

that the set {Ax : x ∈ K} is not closed.

2. (a) Suppose X is a closed convex set. Prove that

KX = {(x, t) : t > 0 and x/t ∈ X}

is a convex cone.

(b) If X is bounded, show that KX = KX ∪ {(0, 0)}.
(c) Give an example of a closed convex set X for which KX 6= KX ∪ {(0, 0)}.

3. Let K be a polyhedral cone.1 Prove that K∗ is also polyhedral.

4. Prove that each of the following cones K are self-dual, meaning K = K∗.

(a) Rd
+

(b) SOC(d+ 1)

(c) Sd×d+

5. Let X ⊆ Rd be a closed convex set. For any x ∈ X , define the proximal normal cone

N P
X (x) =

{
v ∈ Rd : x = projX (x+ v)

}
.

Prove that NX (x) = N P
X (x).

1The term polyhedral means the cone is defined by finitely many linear inequalities.
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3 Homework 3

1. (Normal Cone to A Cone.) Let K ⊆ Rm be a convex cone. Prove that

NK(x) = −K∗ ∩ {x}⊥ ∀x ∈ K.

2. (A Compressive Sensing Problem.) Consider the following optimization problem

minimize ‖x‖1
subject to: Ax = b.

(The symbol ‖x‖1 denotes the `1 norm on Rd, a particular member of the the family
of `p norms defined as follows: for any p ∈ [1,∞), we define

‖x‖pp :=
d∑
i=1

|xi|p ∀x ∈ Rd.

If p =∞, we define ‖x‖∞ := maxi=1,...,d |xi| for all x ∈ Rd.)

(a) Write an equivalent linear programming formulation of this problem.
(b) Take the dual of the linear program from part 2a.
(c) Prove that the linear program from part 2b is equivalent to the following problem

maximize 〈y, b〉
subject to: ‖ATy‖∞ ≤ 1.

3. (Failure Cases.)

(a) Give an example of a linear program where val = +∞ and val∗ = −∞.

(b) Give an example of a conic program where val is finite but not attained.

(c) Give an example of a conic program where val = +∞, but val∗ is finite.

(d) Give an example of a conic program where val, val∗ ∈ R and val 6= val∗.

4. (Closed Functions.) Let f : Rd → [−∞,+∞] be an extended valued function.

(a) Prove there exists a unique function cl f : Rd → [−∞,+∞], called the closure of
f , satisfying

epi(cl f) = epi(f).

Moreover, prove the closure satisfies the following limiting formula:

cl f(x) = lim
ε→0

inf
y∈Bε(x)

f(y). (3.1)

(b) Suppose f is convex. Prove that cl f is convex.

Def. An extended-valued function is closed if epi(f) is closed.

(c) Prove that cl f is closed.
(d) Prove that cl f(x) ≤ f(x) for all x ∈ Rd.
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(e) Suppose f is continuous. Prove that f closed.
(f) Suppose that f is continuous at a point x ∈ Rd. Prove that f(x) = cl f(x). (In

other words,
f(x) = lim

ε→0
inf

y∈Bε(x)
f(y).)

(g) Suppose that for all x ∈ Rd, we have

f(x) = lim
ε→0

inf
y∈Bε(x)

f(y).

Prove that f is closed. (Such functions are called lower semicontinuous.)
(h) Give an example of a closed extended valued function such that dom(f) =
{x : f(x) < +∞} is open.

5. (Strong Duality.) Let A ∈ Rm×d, let c ∈ Rd, and let K ⊆ Rd be a closed convex
cone. Consider the family of primal and dual conic problems, which both depend on a
parameter b ∈ Rm:

minimize cTx

subject to: Ax = b

x ∈ K

︸ ︷︷ ︸
P(b)


maximize bTx

subject to: c− ATy ∈ K∗

︸ ︷︷ ︸
D(b)

(3.2)

Recall the value function val : Rm → [−∞,∞]

val(b) = inf{cTx : Ax = b, x ∈ K} ∀b ∈ Rm,

and the asymptotic value function a-val : Rm → [−∞,∞]

a-val = cl val.

(a) Suppose there is a point b ∈ Rm such that val(b) = a-val(b) ∈ R. Prove that
val(b′) > −∞ for all b′ ∈ Rm.

(b) Give an example of a conic program and a vector b such that the val(b) = +∞
and a-val(b) < +∞.

(c) Suppose that val is continuous at a point b ∈ Rm. Prove that strong duality
holds:

val(b) = sup{bTy : c− ATy ∈ K∗}.

(d) Prove that val is convex. Is a-val convex?

Consider the following basic property of convex functions:

Theorem 3.1 (Borwein and Lewis Theorem 4.1.3). Let f : Rd → (−∞,+∞] be a
convex function. Then f is continuous on the interior of its domain.2

Notice that the function f in the above theorem never takes value −∞.

2Recall that dom(f) = {x : f(x) < +∞}.
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(e) We say that P(b) is strongly feasible if there exists an ε > 0 such that for all
b′ ∈ Bε(b) the perturbed problem P(b′) is feasible.

Suppose that P(b) is strongly feasible. Then show that strong duality holds:

val(b) = sup{bTy : c− ATy ∈ K∗}.

(f) (Slater’s Condition.) If P(b) has a feasible point x lying in the interior of K
and if rank(A) = m, prove that strong duality holds:

val(b) = sup{bTy : c− ATy ∈ K∗}.

(Note that it is very common to assume rank(A) = m in the optimization liter-
ature, and we can assume this without loss of generality. Indeed, if A is not full
rank, we can simply row reduce the system and form a new problem with the row
reduced matrix. Clearly, any solution to the new problem still solves the original
one.)
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4 Homework 4

1. (Extreme Points.)

(a) Give an example of a polyhedron with no extreme points.

(b) Prove that any nonempty polyhedron in standard form P = {x : Ax = b, x ≥ 0}
has at least one extreme point.

2. (Polyhedral Functions.) We call a function f : Rd → (−∞,∞] polyhedral if epi(f)
is polyhedral. Prove that any polyhedral function f admits the representation:

f(x) = max
i=1,...,n

{aTi x+ bi}+ δX (x), ∀x ∈ Rd

where n ≥ 0, X ⊆ Rd is a polyhedral set, and for i = 1, . . . , n, we have ai ∈ Rd and
bi ∈ R. (Hint: write f(x) = inf{t : (x, t) ∈ epi(f)}.) Does the value function of a
polyhedral program admit such a representation? Justify your answer.

3. (Strict Complementary Slackness.) In this exercise, we examine the strict com-
plementary slackness condition. To that end consider the following primal-dual pair of
linear programs:

minimize cTx

subject to: Ax = b

x ∈ R+

maximize bTx

subject to: ATy + s− c = 0

s ≥ 0

(4.1)

Throughout this exercise, we suppose that optimal solutions exist. Consider the fol-
lowing condition.

Condition. Suppose that there is some j ∈ {1, . . . , d} so that every optimal solution
x∗ satisfies x∗j = 0.

In the next three parts, suppose the above condition holds. Under this condition, we
will prove there is a dual optimal pair (y, s) with sj > 0.

(a) Consider the following linear program:

minimize −xj
subject to: Ax = b

cTx ≤ val

x ≥ 0.

Show that its dual is

maximize bTy − tval
subject to: ATy − tc+ s = −ej

s, t ≥ 0,
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where ej denotes the jth standard basis vector. Prove that this dual has an
optimal solution (ȳ, t̄, s̄) and show that bT ȳ = t̄val.

(b) Suppose t̄ > 0 and let y = ȳ/t and s = (s̄ + ej)/t̄. Prove that sj > 0 (obvious)
and (y, s) solves the original dual problem.

(c) Suppose that t̄ = 0. Find an optimal solution (y, s) to the original dual problem
with sj > 0.

Using the above results, we can construct a primal-dual pair satisfying the strict com-
plementary slackness condition. To that end, define a subset of indices J ⊆ {1, . . . , d}
by the following formula

J := {j : ∃ primal optimal x with xj > 0}.

Using J , we will construct a sequence (x1, y1), . . . , (xd, yd) of primal-dual optimal pairs
with the following properties: For each j ∈ J , we let yj be an arbitrary dual optimal
solution and let xj be a primal optimal solution with xjj > 0. On the other hand, for
each j /∈ J , we let xj be an arbitrary primal optimal solution and let yj be a dual
optimal optimal solution with (c − ATyj)j > 0 (exists by Parts 1-3). Given these
primal-dual optimal pairs, define

x∗ :=
1

d

d∑
j=1

xj and y∗ :=
1

d

d∑
j=1

yj.

(d) Bonus. Show that the pair (x∗, y∗) is primal-dual optimal and in addition satisfies
strict complementary slackness, namely,

x∗j > 0 if and only if (c− ATy∗)j = 0, ∀j

4. (A Closed Value Function.) Prove that val : Rd → (−∞,+∞] is closed if for every
γ, τ ∈ R, the set

{x : cTx ≤ γ, ‖Ax‖ ≤ τ, x ∈ K}

is bounded. Under this condition, prove that whenever val(b) is finite, strong duality
holds (val = val∗) and there exists a primal optimal solution.

5. Prove the following Lemma:

Lemma 4.1 (Fréchet Subgradients of Convex Functions). Let f : Rd → (−∞,∞] be a
convex function. Then

∂Ff(x) =
{
v : f(y) ≥ f(x) + 〈v, y − x〉, ∀y ∈ Rd

}
, ∀x ∈ dom(f).

Equivalently, v ∈ ∂Ff(x) if and only if f(y)− 〈v, y〉 is minimized at x.

6. (Fermat’s Rule.) Prove the following Theorem
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Theorem 4.2 (Fermat’s Rule). Let f : Rd → (−∞,∞] be a proper function and
suppose that x̄ is a local minimizer of f . Then

0 ∈ ∂Ff(x̄).

If moreover f is convex, the condition 0 ∈ ∂f(x) is both necessary and sufficient for x
to be a global minimum.

7. (Mean Value Theorem.) Suppose f : Rd → R is a closed convex function and let
x, y ∈ Rd. Show that there exists t ∈ [0, 1] such that

f(x)− f(y) ∈ 〈x− y, ∂f((1− t)x+ ty)〉

(Hint: consider the convex function t 7→ f((1−t)x+ty)+t(f(x)−f(y)) on the compact
interval [0, 1].)

The next exercise relies on the following definition.

Definition 4.3 (Lipschitz Continuity). A function f : Rd → R is called Lipschitz continuous
if

|f(x)− f(y)| ≤ L‖x− y‖, ∀x, y ∈ Rd.

for some L > 0. The constant L is called a Lipschitz constant of f .

8. (Lipschitz Continuity.) Let f : Rd → R be a closed convex function. Show that f
is Lipschitz continuous with Lipschitz constant L if and only if for all x ∈ Rd, it holds

v ∈ ∂f(x) =⇒ ‖v‖ ≤ L
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5 Homework 5

1. Consider the simplex method applied to a standard form problem. Assume that the
rows of the matrix A are linearly independent. Prove or disprove the following.

(a) A variable that just left the basis cannot reenter in the very next iteration (under
any choice of pivoting rule).

(b) A variable that just entered the basis cannot leave in the very next iteration
(under any choice of pivoting rule).

(c) If there is a nondegenerate optimal solution, then there exists a unique optimal
basis.

(d) If x is an optimal solution, no more than m of its components can be positive,
where m is the number of equality constraints.

2. Consider a polyhedron in standard form {x : Ax = b, x ≥ 0} and let x, y be two
different basic feasible solutions. If we are allowed to move from any basic feasible
solution to an adjacent one in a single step, show that we can go from x to y in a finite
number of steps.

3. Convex Hulls. Let X ⊆ Rd. We define the convex hull to be the smallest convex
set containing X and denote this set by conv(X ). Here, the word “smallest” means
that whenever a convex set Y ⊆ Rd contains X , it must be the case that Y contains
conv(X ) as well. Prove that

conv(X ) =

{
x ∈ Rd : x =

nx∑
i=1

αixi for some nx > 0, xi ∈ X , and αi ∈ [0, 1] with
nx∑
i=1

αi = 1

}
.

4. Easy Subdifferential Facts.

(a) Let f : Rd → (−∞,∞] be a closed, proper, convex function. Show that for all
x ∈ dom(f), the set ∂f(x) is closed and convex.

(b) Let d = d1+ . . .+dn for integers di and let fi : Rdi → (−∞,+∞] be proper convex
functions. Then

∂(f1 + . . .+ fn)(x1, . . . , xn) = ∂f1(x1)× . . .× ∂fn(xn) ∀xi ∈ dom(fi)

(c) Let f : Rd → (−∞,∞] be a closed, proper, convex function and let λ > 0. Then
prove that the function g = λf is satisfies

∂g(x) = λ∂f(x), ∀x ∈ dom(f).

(d) Let f : Rd → (−∞,∞] be a closed, proper, convex function and let b ∈ Rd. Then
prove that the shifted function g(·) = f((·) + b) satisfies

∂g(x) = ∂f(x+ b), ∀x ∈ dom(f)− {b}.
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5. Compute the subdifferentials of the following functions on Rd (some are differentiable,
others are easy applications of the chain rule/the easy from subdifferential facts in
Exercise 4):

(a) `1 norm. f(x) = ‖x‖1 =
∑d

i=1 |xi|.
(b) Hinge loss. f(x) = max{0, x} (where d = 1).
(c) Hybrid Norm. f(x) =

√
1 + x2 (where d = 1).

(d) Logistic function. f(x) = log(1 + exp(x)) (where d = 1).
(e) Indicator of `p ball. f(x) = δX (x) where for p ∈ [1,∞] and τ > 0, we have
X = {x : ‖x‖p ≤ τ}.

(f) Max of coordinates. f(x) = max{x1, . . . , xd}.
(g) Polyhedral Function. f(x) = maxi≤m{〈ai, x〉 + bi} where a1, . . . , am ∈ Rd are

vectors and b1, . . . , bm ∈ R
(h) Quadratic. f(x) = 1

2
〈Ax, x〉 for some symmetric matrix A ∈ Rd×d.

(i) Least Squares. f(x) = 1
2
‖Ax− b‖22 where A ∈ Rm×d and b ∈ Rm.

(j) Least Absolute Deviations. f(x) = ‖Ax− b‖1 where A ∈ Rm×d and b ∈ Rm.

6. Descent Directions

(a) Suppose that f is Fréchet differentiable on Rd and that ∇f(x) is a continuous
function of x. Show that for all x ∈ Rd with ∇f(x) 6= 0, there exists γ > 0 such
that

f(x− γ∇f(x)) < f(x).

(Hint: Consider the derivative of the one variable function g(γ) = f(x−γ∇f(x)).)

(b) Consider a convex function f(x, y) = a|x|+ b|y| for scalars a, b > 0. Find a point
(x0, y0) ∈ R2, coefficients a, b > 0, and a subgradient v ∈ ∂f(x, y) so that

f((x0, y0)− γv) > f(x0, y0) ∀γ > 0.

(c) Let f be a continuous convex function. Let x ∈ Rd and suppose that
0 /∈ ∂f(x). In this exercise, we will show that the minimal norm subgradient of f
at x

v := proj∂f(x)(0).

is a descent direction.

i. Show that
〈w,−v〉 ≤ −‖v‖2 ∀w ∈ ∂f(x).

ii. Next, define the one variable continuous convex function g(γ) = f(x − γv).
Show that

η ∈ ∂g(0) =⇒ η < −‖v‖2.

Can 0 be a minimizer of g?

iii. Show that for all γ < 0, we have g(γ) > g(0).

iv. Use parts (b) and (c) to show that for g(γ) < g(0) for all sufficiently small
γ > 0.
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7. Prove the following propositions.

(a) Clipped/Bundle Models. Let x ∈ Rd and suppose that fx is an (l, q) model of
f at x. Moreover, assume that g : Rd → (−∞,∞] is closed, proper, convex, and
dominated by f : g(y) ≤ f(y) for all y ∈ Rd. Then

max{fx, g}

is an (l, q)-model of f at x.

(b) Projected/Proximal Models. Suppose that f admits the decomposition

f = g + h,

where g, h : Rd → (−∞,∞] are closed, proper, convex functions. Let x ∈ Rd and
suppose that gx is an (l, q) model of g at x. Then

gx + h

is an (l, q)-model of f at x.

(c) Max-Linear Models. Suppose that f admits the decomposition

f = max(f1, . . . , fn),

where for each i, the function fi : Rd → (−∞,∞] is closed, proper, and convex.
Let x ∈ Rd and suppose for each i, the function (fi)x is an (l, q) model of fi at x.
Then

max{(f1)x, . . . , (fn)x}

is an (l, q)-model of f at x.

8. Clipping subproblem. Let a, x ∈ Rd, let lb ∈ R, let ρ > 0, and let b ∈ R.
Prove that the point

x+ = argmin
y∈Rd

{
max{〈a, y〉+ b, lb}+

ρ

2
‖y − x‖2

}
satisfies

x+ = x− clip

(
ρ

‖a‖2
(〈a, x〉+ b− lb)

)
a

ρ
where clip(t) = max{min{t, 1}, 0}.

(Hint: use first order optimality conditions.)
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6 Homework 6

In this homework we study the core algorithmic subproblem in proximal algorithms. For
motivation recall the proximal subgradient method from lecture. This is perhaps the most
common algorithm one encounters in first-order methods, so you should at least have a
working knowledge of how to implement its steps, when possible. In general it can be
quite hard to implement these steps. Indeed, the subproblem includes as a special case the
projection of a vector onto a convex set, a generally difficult task. Still for a few useful
functions we can implement these steps, even with simple closed form expressions.

1. Let f : Rd → (−∞,∞] be a closed, proper, convex function. Let γ > 0 and define the
proximal operator proxγf : Rd → Rd:

proxγf (x) = argmin
y∈Rd

{
f(y) +

1

2γ
‖y − x‖2

}
.

(a) Prove that for all x ∈ Rd, we have

x+ = proxγf (x) ⇐⇒ (x− x+) ∈ γ∂f(x+)

(Hint: use strong convexity.)

(b) Prove that x ∈ Rd is minimizes f if and only if x = proxγf (x).

(c) (Minty’s Theorem.) Prove that

range(I + ∂f) = {x+ v : v ∈ ∂f(x)} = Rd.

(Hint: use part (a).)

(d) Prove that proxγf is 1-Lipschitz, i.e.,

‖proxγf (x)− proxγf (y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rd.

(Hint: use strong convexity.)

Notice the relation between proximal and projection operators: If f(x) = δX for a
closed convex set X , then proxγf = projX for all γ > 0.

2. Calculus of Proximal Operators.

(a) (Linear Perturbation.) Suppose that f : Rd → (−∞,∞] is closed, proper, and
convex, let γ > 0, and let b, v ∈ Rd. Define a function

g(x) = f(x+ b) + vTx, ∀x ∈ Rd

Prove that
proxγg(x) = proxγf (x− γv + b)− b, ∀x ∈ Rd

(Hint: First try the cases where b = 0 or v = 0.)
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(b) (Separability.) Let d = d1 + . . .+dn for integers di and let fi : Rdi → (−∞,+∞]
be proper convex functions. Let γ > 0 and for all x = (x1, . . . , xn) ∈ Rd, define
f(x1, . . . , xn) :=

∑n
i=1 f(xi). Prove that

proxγf (x1, . . . , xn) = (proxγf (x1), . . . , proxγfn(xn)), ∀x ∈ Rd.

(c) (Scalarization.) Let f : R → (−∞,∞] be a scalar function, let γ > 0, and
let a ∈ Rd\{0}. Define

g(x) = f(aTx), ∀x ∈ Rd

Prove that for all x ∈ Rd, we have

proxγg(x) = x− ρa where ρ =
1

‖a‖2
(aTx− prox(γ‖a‖2)f (a

Tx)).

(Hint: Be careful: the chain rule ∂g(y) = a∂f(aTy) may not hold. Instead, use
the inclusion a∂f(aTy) ⊆ ∂g(y).)

3. Proximal Operator Examples. Compute the proximal operators of the following
functions

(a) f(x) := ‖x‖1 =
∑d

i=1 |xi|.
(b) f(x) = max{0, x} for a scalar variable x ∈ R.

(c) f(x) = 1
2
〈Ax, x〉 − 〈b, x〉, where b ∈ Rd and A ∈ Rd×d is a symmetric positive

semidefinite matrix.

(d) f(x) = ‖x‖2.
(Hint: First compute the subdifferential of f , keeping in mind that f is differen-
tiable everywhere except the origin.)

(e) f(x) = δX , where X = {x ∈ Rd : x ≥ 0} is the nonnegative orthant.

(f) f(x) = δX , where X = {x : Ax = b} is an affine space defined by matrix A ∈ Rm×d

and b ∈ Rm.

(g) f(x) = δX , where X = {x : ‖x‖∞ ≤ 1}
(Hint: You already computed ∂f(x) on a previous homework assignment.)

4. (Projection onto Sd×d+ ). Recall that any symmetric matrix A ∈ Sd×d (not necessarily
positive semidefinite) has an eigenvalue decomposition

A = QΛQT where


QTQ = I

Λ = diag(λ1, . . . , λd)

λ1 ≥ . . . ≥ λd.

 .

For any such matrix, prove that

projSd×d
+

(A) = Qmax{Λ, 0}QT .

(Hint: Verify the first order optimality conditionsA−projSd×d
+

(A) ∈ NSd×d
+

(projSd×d
+

(A)))
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Finally consider the following problem on sensitivity analysis for linear programs.

5. Consider the linear program min(cTx : x ≥ 0, Ax = b). Let B denote an optimal
basis. Assume that the problem is generic in that each vertex has a unique basis for
which it is the corresponding basic solution. Suppose now that you want to solve a
parametric problem, i.e., a set of problems of the form min((c+λd)Tx : x ≥ 0, Ax = b),
for each possible value of λ ≥ 0. Assume that for any λ ≥ 0 the problem has an optimal
solution and that the basis B is a solution for the problem when λ = 0.

(a) Prove that the set of values of λ for which basis B is optimal forms an interval
[0, a1]. Explain how to compute a1.

(b) Show that there is a finite set a0 = 0 ≤ a1 ≤ ... ≤ ak and corresponding bases Bi

for i = 0, ..., k such that B0 = B and Bi (for i = 0, ..., k) is the optimal basis if
and only if λ ∈ [ai, ai+1], and Bk is optimal if λ ≥ ak.
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