
Recitations for ORIE 6300: Mathematical Programming
I

Benjamin Grimmer∗

∗School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850, USA;
people.orie.cornell.edu/bdg79/.

1

1 Recitation 1: Linear Images of Polyhedra

Today’s recitation provides a proof for the following fact that was stated in class:

Proposition 1.1 (Linear maps preserve polyhedrality). Let P ⊆ Rn be a polyhedral set,
which is a set defined by a finite number of linear inequalities. Consider A ∈ Rm×n. Then,
the set

{Ax | x ∈ P}

is a polyhedral set.

Before proceeding with the proof, note that assuming P is defined by linear inequalities
is without loss of generality; indeed, we have the following equivalence:

aTi x = bi ⇔

{
aTi x ≤ bi,

aTi x ≥ bi
,

which allows us to convert any linear equality into two inequalities. The proof is construc-
tive, i.e. we can identify an explicit way to start from the inequalities defining P and
construct linear inequalities that define {Ax | x ∈ P}.

The next step will make our lives much easier when working towards the proof of Propo-
sition 1.1:

Claim 1. It suffices to prove Proposition 1.1 for projection matrices P ∈ R(n−1)×n, which
eliminate one coordinate when applied to a vector x ∈ Rn.

Proof of Claim. Let’s take a look at an example of such a matrix:

P =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
0 0 . . . 1 0

 ∈ Rn−1×n.

This projection “eliminates” the variable xn from a point x.
Now let us see why the Claim holds. First, we prove by induction that we can eliminate

as many variables as we want and keep the set polyhedral, as long as we’ve proved the base
step.

• Base step: the set {Px, x ∈ P}, where P is matrix that eliminates one of the coordi-
nates and P is a polyhedron, is itself polyhedral.

• Now, assume we’ve proved that eliminating k variables from the set {x ∈ P} results
in a polyhedral set.

• Since we have proved the result for k variables, we have a set in Rn−k which is polyhe-
dral. Then, by the base step, we can apply a projection again to result in a set that is
polyhedral and in Rn−k−1, i.e. we have eliminated one more variable.

2

Now, consider the case of an arbitrary linear map A: if you examine the following set closely,
you will get a clear idea of where we’re heading next:

{
(
x
y

)
∈ Rn+m | x ∈ P , y = Ax} , P ′ (1.1)

First, let’s convince ourselves that the set in (1.1) is polyhedral. If P was to be described
by the inequalities {x | Cx ≤ d}, we can rewrite P ′ as

P ′ = {
(
x
y

)
∈ Rn+m |

[
C 0

¯m×m
](x

y

)
≤ d,

[
A −Im×m

](x
y

)
= 0}

Now, appealing to our inductive argument, we can readily eliminate the first n variables
in (1.1), giving us precisely the set {Ax | x ∈ P}.

A numerical example in R2 Consider a very simple polyhedral constraint, shown below:

P =


x1 + x2 ≥ 3

2x1 − x2 ≤ 5

−x1 + 2x2 ≤ 3

The polyhedron and its projection to the variable x1 are shown in 1. Let’s see what we can

x1

x2

Px2

-1 0 1 2 3 4 5
-1

0

1

2

3

4

Px
1 +
x
2 ≥

3 2x
1
−
x 2
≤

5−x1
+ 2x2

≤ 3

Figure 1: A polyhedron P ⊆ R2 and its projection to x2, Px2

eliminate by hand: if we seek to bring x1 to the LHS of the constraints shown above, we
obtain 

x1 ≥ 3− x2,

2x1 ≤ 5 + x2,

−x1 ≤ 3− 2x2

Dividing the second inequality by 2 and multiplying the last one by −1, gives us
x1 ≥ 3− x2,

x1 ≤ 5
2

+ x2

2
,

x1 ≥ 2x2 − 3

3

Now, combine the second inequality with the first and third ones to eliminate x1 and obtain

1

3
≤ x2 ≤

11

3
,

which is exactly the projection shown in 1.

An example in R3 Let’s do the same for a polyhedral set in 3 dimensions that is easy to
visualize. Consider the following polyhedron:

P := {x ∈ R3 | x ≥ 0, x1 + x2 + x3 ≤ 1} (1.2)

Suppose we want to find the set C = {Px | x ∈ P}, where P is the projection matrix that
eliminates the variable x1. If we follow the same strategy to eliminate x1, we get

x1 ≤ 1− x2 − x3, x1 ≥ 0

which gives us
1− x2 − x3 ≥ 0⇒ x2 + x3 ≤ 1.

It is easy to verify visually that the resulting set is exactly what we would expect to obtain
if we projected P to its last 2 coordinates, as shown in (2)

x1

(1, 0, 0)
x2

(0, 1, 0)

x3

(0, 0, 1)

P
=⇒

x2

x3

(0, 1, 0)

(0, 0, 1)

x
2 +
x
3 ≤

1x
3
≥

0

x2 ≥ 0

Figure 2: Eliminating x1 from (1.2)

Proof of Proposition 1.1. Equipped with Claim 1, let us see how to prove the desired result
for the case where we want to eliminate xn. Like before, assume P is described by linear
inequalities only. Additionally, let us index those inequalities, like below:

aT1 x ≤ b1,

aT2 x ≤ b2,
...

aTmx ≤ bm

.

4

Denote I0, I+, I− ⊆ [m] the index sets where the coefficient of xn is 0, positive and negative,
respectively. We maintain the the inequalities in I0 as they were, since xn is not present
there. For the remaining constraints, multiply the left and right hand sides so as to make
the coefficient of xn equal to 1. Denote by ci the scaled vectors of coefficients for the first
n− 1 variables, di for the scaled constants, and:

x̄ =

 x1
...

xn−1

 .

Then, we can write
cTi x̄ ≤ di, i ∈ I0

cTi x̄+ xn ≤ di, i ∈ I+

cTi x̄+ xn ≥ di, i ∈ I−
⇔


cTi x̄ ≤ di, i ∈ I0

xn ≤ di − cTi x̄, i ∈ I+

xn ≥ di − cTi x̄, i ∈ I−

For now, assume that both sets I+, I− are nonempty. Since xn ≤ di − cTi x̄ for all i ∈ I+ and
also xn ≥ di − cTi x̄ for all i ∈ I−, we can combine the inequalities to obtain{

0 ≤ di − cTi x̄, i ∈ I0

dj − cTj x̄ ≤ xn ≤ di − cTi x̄, ∀(i, j) ∈ I+ × I−
A point x̄ is in the projection if it satisfies the above inequalities for some number xn. This
number exists if and only if

dj − cTj x̄ ≤ di − cTi x̄, ∀(i, j) ∈ I+ × I−
which is a set of linear inequalities which do not involve xn, hence a polyhedron in Rn−1.

What if one of the two sets I+, I− is empty? In that case, the inequalities in the nonempty
set are redundant. To see why, assume without loss of generality that the set I− is empty.
Then, the system becomes {

0 ≤ di − cTi x̄, i ∈ I0

dj − cTj x̄ ≤ xn, i ∈ I+

Letting xn approach +∞, we end up with a vector x̄ that, additionally to the constraints in
I0, trivially satisfies all of the constraints in I+. This completes the proof.

Remarks on the complexity of describing a polyhedron So far we have shown that
sets {Ax | x ∈ P} are polyhedral. However, it may not be more efficient to describe this set
by a collection of inequalities.

To be precise, suppose P can be described using n inequalities. Then our proof of Propo-
sition 1.1 shows the polyhedron given by projecting one coordinate away can be described
using at most (n/2)2 inequalities (when |I−| = |I+| = n/2). Repeating this argument to
remove d coordinates may result in needing an exponential number of inequalities. Hence
even though {Ax | x ∈ P} is a polyhedron, it may not always be to your benefit to put it in
that form.

A concrete example of this complexity difference appears in the first homework assign-
ment for the `1-ball.

5

2 Recitation 2: Sufficient Optimality Conditions for

Convex Optimization

Today’s recitation provides two helpful lemmas for convex optimization.

Frechet gradients of convex functions. Recall the Frechet gradient provides the unique
approximation of a function f up to first order. Namely,

f(y) = f(x) + 〈∇f(x), y − x〉+ ox(y) where lim
y→x

ox(y)

‖y − x‖
= 0.

Here the little-o function captures all the ways that the function deviates from the first-order
approximation f(x) + 〈∇f(x), y− x〉. For convex functions, we can say something stronger.
Not only does the gradient provide an accurate approximation of f close to x, but it also
provides a lower bound on f everywhere. This is formalized in the following lemma.

Lemma 2.1. Consider any convex f : Rd → R that is (Frechet) differentiable at some point
x ∈ domf . Then all y ∈ Rd satisfy

f(y) ≥ f(x) + 〈∇f(x), y − x〉.

Proof. Lets examine points on the line segment

[(x, f(x)), (y, f(y))] = {λ(y, f(y)) + (1− λ)(x, f(x)) | 0 ≤ λ ≤ 1}.

The definition of the (Frechet) gradient at x ensures for any 0 ≤ λ ≤ 1

f(λy + (1− λ)x) = f(x) + 〈∇f(x), λy + (1− λ)x− x〉+ ox(λy + (1− λ)x).

Simplifying this yields

f(λy + (1− λ)x) = f(x) + λ〈∇f(x), y − x〉+ ox(λy + (1− λ)x).

Since f and consequently epif are convex, λ(y, f(y)) + (1− λ)(x, f(x)) ∈ epif . Hence

λf(y) + (1− λ)f(x) ≥ f(x) + λ〈∇f(x), y − x〉+ ox(λy + (1− λ)x),

or equivalently,

f(y)− f(x) ≥ 〈∇f(x), y − x〉+ ox(λy + (1− λ)x)/λ.

Taking the limit as λ→ 0 (and so λy + (1− λ)x→ x) gives the claimed inequality.

This result can be viewed in terms of normal cones of the epigraph of f . Considering any
(y, t) ∈ epif , we have t ≥ f(y) ≥ f(x) + 〈∇f(x), y − x〉. This can be restated as saying all
(y, t) ∈ epif satisfy

〈(∇f(x),−1), (y, t)− (x, f(x))〉 ≤ 0.

Hence the gradient defines a normal vector to the epigraph of f at (x, f(x)) as

(∇f(x),−1) ∈ Nepif ((x, f(x))).

6

Global optimality conditions. In lecture, a necessary condition for first-order optimality
(Theorem 3.3) was derived. In particular, any local minimizer x̄ of a function f : Rd → R
on a closed convex set X ⊆ Rd must satisfy

−∇f(x̄) ∈ NX (x̄)

if f is (Frechet) differentiable at x̄.
Alas this condition is not sufficient to determine whether a point x̄ is a local minimizer

of f . For example, when X = Rd, we have NX (·) = {0} everywhere. Then this condition
reduces to ∇f(x) = 0. However simple nonconvex functions like f(x, y) = x2 − y2 can be
given that have a saddle point at (0, 0) despite having ∇f(0, 0) = 0.

If we restrict the types of functions considered, there is hope. One possible approach
is to additionally assume that f is twice differentiable and has a positive definite Hessian
at x̄. In this case, one can show having −∇f(x̄) ∈ NX (x̄) does indeed imply x̄ is a local
minimizer. This would exclude bad cases like f(x, y) = x2 − y2, which has an indefinite

Hessian ∇2f(0, 0) =

[
2 0
0 −2

]
. However, we don’t pursue proving this here.

Instead we show −∇f(x̄) ∈ NX (x̄) is a sufficient condition if f is convex. Lemma 2.1
showed that for convex functions, the gradient provides a global bound on the function.
Utilizing this, we find that the condition −∇f(x̄) ∈ NX (x̄) not only ensures x̄ is a local
minimizer but ensures it is a global minimizer of f over X .

Lemma 2.2. Consider any closed convex set X ⊆ Rd and convex f : Rd → R that is (Frechet)
differentiable at some point x̄ ∈ X . If

−∇f(x̄) ∈ NX (x̄),

then x̄ is a global minimizer of f over X .

Proof. By the definition of the normal cone, −∇f(x̄) ∈ NX (x̄) ensures

〈−∇f(x̄), y − x̄〉 ≤ 0

for all y ∈ X . Then Lemma 2.1 implies

f(y)− f(x̄) ≥ 0

for all y ∈ X , which is exactly the statement that x̄ globally minimizes f over X .

3 Recitation 3: Linear and SOC Program Modeling

Today’s recitation focuses on how we can model of different problems using standard types
of conic programs (specifically, we will consider linear and second-order cone programs).

7

Definitions. Recall the following two types of conic programs:
Linear Programs are of the form

minimize cTx
subject to Ax = b

x ∈ Rn
+

where the conic constraint is defined with the nonnegative orthant Rn
+ = {x ∈ Rn | xi ≥

0 ∀i = 1, ..., n}.
Second-Order Cone Programs are of the form

minimize cTx
subject to Ax = b

(Dix+ ei, f
T
i x+ gi) ∈ SOCni+1 i = 1, . . . ,m

where the conic constraint is defined as an affine transformation of x must lie in the second-
order cone SOCn+1

+ = {(x̄, xn+1) ∈ Rn | ‖x̄‖2 ≤ xn+1}. Each of these second-order cone
constraints can be written as the inequality

‖Dix+ ei‖2 ≤ fT
i x+ gi.

Regularized Optimization At its simplest, second-order cone constraints allow things
like ‖x‖2 ≤ D, which can be viewed as regularizing the problem. That is, this constraint sets
a scale for the problem and prevents undesirable outcomes like the solution x running off to
infinity. As an aside, constraints of this form are common throughout the machine learning
literature as a tool to prevent overfitting to training data.

Robust Linear Programming. Suppose we want to solve a linear program, but have
uncertainty in the exact values of ai, bi, or c. We may then want to expand our formulation
to be robust to small variations in these values. To make this concrete, we will focus on
uncertainty in the constraint vectors ai and suppose bi and c are fixed. We can reasonably
model the possible variations in ai by asserting that it lies in a given ellipsoid

ai ∈ Ei = {āi + Piu | ‖u‖2 ≤ 1}.

Here āi controls the center of the ellipsoid and Pi controls its shape. Taking Pi = I simply
gives a ball around āi. If Pi is singular, we have a ’flat ellipsoid’ with no width in directions
from its null space. Hence we can model certainty in some aspects of ai and uncertainty in
others.

From this, we formulate our Robust Linear Program as

minimize cTx
subject to aTi x ≤ bi, for all ai ∈ Ei, i = 1, . . . ,m

We remark that this is a generalization of standard linear programs since setting Pi = 0 makes
Ei = {āi}. Hence we can still have linear inequalities (and consequently, linear equalities by
adding aTi x ≤ bi and −aTi x ≤ −bi).

8

Alas this problem has infinitely many constraints and so this formulation does not seem
very tractable. To resolve this, consider the robust linear constraint aTi x ≤ bi, for all ai ∈ Ei.
We can express this as

sup{aTi x | ai ∈ Ei} ≤ bi.

Notice that the lefthand side of this can be expressed as

sup{aTi x | ai ∈ Ei} = āTi x+ sup{uTPix | ‖u‖2 ≤ 1}
= āTi x+ ‖Pix‖2.

Thus the robust linear constraint can be written as āTi x + ‖Pix‖2 ≤ bi, which is indeed a
second-order cone constraint. Thus we can write our robust linear program as the following
second-order cone program

minimize cTx
subject to āTi x+ ‖Pix‖2 ≤ bi, i = 1, . . . ,m

which only has finitely many constraints.

Linear Programming with Random Constraints. A reasonable critique of the above
model is that we are required to satisfy very possible outcome for the uncertain ai. Instead,
one may want a statistical approach that requires our solution is feasible 95% of the time.
To give such a formulation, we need to specify a statistical model generating the vectors
ai. One reasonable approach (which we will pursue) is to assert that each ai comes from
an independent Gaussian distribution with mean āi and covariance Σi. Then probabilistic
constraint can be written as

prob(aTi x ≤ bi) ≥ η

for some fixed η ≥ 1/2 representing the level of confidence we want to impose.
Notice that this type of problem is a generalization of standard linear programming.

Setting the covariance of some ai to be Σi = 0 will make ai always take its mean value āi.
Then prob(aTi x ≤ bi) ≥ η happens if and only if āTi x ≤ bi. As before, we can then model
linear equality constraints by having a pair of deterministic inequality constraints aTi x ≤ bi
and −aTi x ≤ −bi.

We will show that this type of probabilistic constraint can be written as a second-order
cone constraint. Define the random variable u = aTi x and denote its mean by ū and variance
by σ2. Noting that u must also have a Gaussian distribution, we can write our probabilistic
constraint as

prob(
u− ū
σ
≤ bi − ū

σ
) ≥ η.

Since (u − ū)/σ is a zero mean, unit variance Gaussian variable, the probability above is
simply Φ((bi − ū)/σ) where

Φ(z) =
1√
2π

∫ z

−∞
e−t

2/2dt

is the cumulative distribution function of a standard Gaussian random variable. Since this
function monotonically increases, it is invertible. Hence, we can rewrite our constraint as

bi − ū
σ
≥ Φ−1(η)

9

or equivalently,
ū+ Φ−1(η)σ ≤ bi.

Our definition of u = aTi x ensures that ū = āTi x and σ2 = xTΣix. Hence, we obtain the
equivalent constraint

āTi x+ Φ−1(η)‖Σ1/2
i x‖2 ≤ bi.

Our assumption that η ≥ 1/2 guarantees that the coefficient Φ−1(η) of ‖Σ1/2
i x‖ is nonnega-

tive. Thus this is a second-order cone constraint.
In summary, we have found that a Linear Program with Random Constraints

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

can be expressed as the second order cone program

minimize cTx

subject to āTi x+ Φ−1(η)‖Σ1/2
i x‖2 ≤ bi, i = 1, . . . ,m.

4 Recitation 4: Polyhedral Geometry

Today’s recitation focuses on characterizing the extreme points of polyhedrons both geo-
metrically and algebraically. This perspective will form the basis for our discussion in the
following recitations of the simplex algorithm for solving linear programs.

Corner Points of Polyhedrons. Consider a polyhedron P = {x ∈ Rd | Ax ≤ b} where
A ∈ Rm×d and b ∈ Rm. We begin by offering three different definitions for ”corner points”
of a polyhedron P .

First, we say some x ∈ P is an Extreme Point if no two points y, z ∈ P exist different
from x such that x = λy + (1 − λ)z for some λ ∈ [0, 1]. That is, an extreme point cannot
be written as a convex combination of any other two points in the polyhedron. Notice that
this definition is purely geometric and does not depend on the way the constraints A are
presented.

Second, we say some x ∈ P is an Vertex if there exists some c ∈ Rd such that cTx < cTy
for all y ∈ P \ {x}. That is, a vertex is the unique minimizer of some linear function over
the polyhedron. Geometrically, this means there is a hyperplane with P on one side of it,
only touching at x.

Third and lastly, we say some x ∈ P is an Basic Feasible Solution (BFS) if there
exist d linearly independent constraint vectors ai with aTi x = bi. If we relax the requirement
that x ∈ P , we say that x is a simply a Basic Solution. Notice that unlike the previous
two definitions, this one is algebraic in nature depending on how the constraints defining P
are given.

10

Equivalence of Corner Point Definitions. Despite these definitions all being different
in their motivation, they are all equivalent. We will now prove this.

Theorem 4.1. Let P be a nonempty polyhedron and x∗ ∈ P . Then x∗ is an extreme point
if and only if x∗ is a vertex if and only if x∗ is a basic feasible solution.

Proof. Without loss of generality, P is defined by constraints aTi x ≤ bi. We prove this by
showing a cycle of implications among these three definitions.

Vertex =⇒ Extreme Point. Suppose x∗ is a vertex and let c ∈ Rd be the vector such
that cTx∗ < cTy for all y ∈ P \ {x∗}. Then for any y, z ∈ P \ {x∗}, we have cTx∗ < cTy and
cTx∗ < cT z. Hence for any λ ∈ [0, 1], cTx∗ < cT (λy + (1− λ)z). From this, we can conclude
that x∗ 6= λy + (1− λ)z for any y, z, λ and thus is an extreme point.

Extreme Point =⇒ Basic Feasible Solution. Suppose x∗ is not a basic feasible
solution and we will show x∗ is not an extreme point. Let I ⊆ [m] be the set of indices
of constraints with aTI x = bi. By assumption {ai | i ∈ I} does not contain d linearly inde-
pendent vectors. Thus some nonzero vector d ∈ Rd must exist with aTI d = 0 for all i ∈ I.
Then notice that for any ε > 0, the points x + εd and x− εd still satisfy all the constraints
in I with equality. Moreover, any constraint not in I is only met with slack at x∗ (that is,
aTj x

∗ < bi). Thus for sufficiently small ε, both x+ εd and x− εd still satisfy each constraint
not in I. Hence we can write x∗ as the average of two feasible solutions x + εd and x− εd,
and so x∗ is not an extreme point.

Basic Feasible Solution =⇒ Vertex. Consider a basic feasible solution x∗ and let
I ⊆ [m] be the set of indices of constraints with aTI x = bi. Consider minimizing over the
polyhedron in the direction c = −

∑
i∈I ai. Noting all feasible points x have aTi x ≤ bi, we

know that
cTx = −

∑
i∈I

aTi x ≥ −
∑
i∈I

bi = cTx∗.

Hence x∗ is a minimizer in the direction c. Moreover, the above reasoning shows that the
optimal objective value can only be attained if all constraints in I are met with equality.
However since I has d linearly independent constraints, there is a unique solution to the
system aTi x = bi for i ∈ I, namely x∗. Hence x∗ is the unique minimizer over P and thus a
vertex.

Finally we note that there can only be a finite number of extreme points in a polyhedron
P . Since these are equivalent to basic feasible solutions, we can associate each extreme point
with a set of d linearly independent constraints defining P . There are only m choose d ways
this can be done, and so there are at most m choose d extreme points in P .

Standard Form Polyhedrons. Without loss of generality, we can assume that polyhe-
drons are defined by P = {x ∈ Rd | Ax = b, g ≥ 0} where A ∈ Rm×d and b ∈ Rm. We
will assume from here onward that the rows of A are linearly independent (since we can
otherwise delete any linearly dependent rows as they correspond to redundant constraints).

11

Basic feasible solutions of standard form polyhedrons can be understood in a particularly
nice way. As previously discussed, a BFS is fully determined by selecting d linearly indepen-
dent constraints to be tight (and then solving the system of linear equations corresponding
to them). This has particularly nice interpretation for standard form polyhedrons.

The m equality constraints must be met, so d−m of the nonnegativity constraints xi ≥ 0
then need to be selected to determine a basic feasible solution. To algrebatically describe
this BFS, we need some definitions: Let B = {B(1), B(2), . . . , B(m)} ⊆ [d] (called the basis)
denote the set of indices not chosen to fix xi = 0. Let xB = [xB(1), xB(2), . . . , xB(m)] denote x
restricted to the indices B and similarly, its complement is xB̄ = [xB̄(1), xB̄(2), . . . , xB̄(d−m)].

Then the unique point x∗ satisfying Ax = b and xi = 0 for i ∈ B̄ is given by

xB̄ = 0,

Ax = ABxB + AB̄xB̄ = b

or equivalently,
xB̄ = 0,

xB = A−1
B b

where AB = [AB(1), AB(2), . . . , AB(m)] is defined like xB to be the columns of A in B. Thus
we see that basic feasible solutions have at most m nonzero elements which are determined
by solving an m×m linear system.

One nicety about writing polyhedrons in standard form is that they always have at least
one basic feasible solution (provided the polyhedron is nonempty). Proving this is left as an
exercise.

Exercise 4.1. Give an example of a nonempty polyhedron with no extreme points.

Exercise 4.2. Any nonempty polyhedron in standard form P = {x ∈ Rd | Ax = b, x ≥ 0}
has at least one extreme point.

Degeneracy. Although we can think about basic feasible solutions x as being defined by
a basis B, this may not uniquely define x. Namely, there could be two distinct bases B and
B′ that both generate x. This happens precisely when

xB̄ = 0,

ABxB = b

as well as
xB̄′ = 0,

AB′xB′ = b.

Hence any xi with i ∈ B ∪B′ must have xi = 0. This means that some constraint xi ≥ 0 for
i ∈ B that was not required to equal zero by our choice B was still equal to zero.

This means there are multiple equivalent ways to describe a basic feasible solution if any
of the basis coordinates happen to take value 0. When this happens, we say that x is a
degenerate BFS. Conversely, if all i ∈ B have xi > 0, we say x is a nondegenerate BFS.

12

Degeneracy occurs when there is ambiguity in which d constraints need to be tight to
determine the point x. Consider the following pair of examples:

In (a) above, we see that the point A is at the intersection of four different planes. Hence
selecting any three of these planes will give a system of equations that determines A is a
basic feasible solution. Thus it is degenerate. Conversely, the point B is the intersection of
three planes and so there is only one selection of constraints that shows B is a basic feasible
solution. Thus it is nondegenerate.

In (b) above, we see another example where the degeneracy does not correspond to the
shape of the underlying polyhedron. The point C lies at the intersection of three lines and
so it is degenerate. However, one of these lines comes from a redundant constraint and so
the representation of P is what makes this degenerate.

Optimality of Extreme Points. So far, we have seen that the corner points of a poly-
hedron have particularly nice structure (geometrically, in terms of optimization, and alge-
braically). For standard form polyhedrons, we have a simple form for these points in terms
of selecting a basis of m (potentially) nonzero entries. Moreover, standard form polyhedrons
always have at least one extreme point (Exercise 4.2). To connect these results to optimiza-
tion, we will see next time that when minimizing a linear function over a polyhedron, some
extreme point is optimal (provided one exists).

Theorem 4.2. For any polyhedron P ⊂ Rd and c ∈ Rd, suppose that P has an extreme
point and a minimizer in the direction c. Then some extreme point is a minimizer.

From this, we have a (terribly slow) algorithm for solving linear programs in standard
form. There are only finitely many basic feasible solutions given by enumerating all pos-
sible choices for the basis B. Iterating over all B (exponentially many!), we can find one
corresponding to the smallest objective value cTBxB = CT

BA
−1
B b that gives a feasible solution

13

xB = A−1
B b ≥ 0. Next time, we will give a better algorithm for solving linear programs called

the Simplex Method.

5 Recitation 5: The Simplex Method I

Today’s recitation begins building the simplex method for solving linear programs:

minimize cTx
subject to Ax = b

x ≥ 0.

Recap on Basic Feasible Solutions (BFS) Recall for any standard form polyhedron
P = {x ∈ Rd | Ax = b, x ≥ 0} with A ∈ Rm×d, the corners of P are identified by selecting m
coordinates to be nonzero. Namely let B, called the basis, be such a choice of indices. Then
we have the corresponding point

xB = A−1
B b

xB̄ = 0,

which we call a basic solution. If this point is feasible A−1
B b ≥ 0 (that is, it lies in P),

we say that it is a basic feasible solution (BFS). Each xi with i ∈ B is called a basic
variable while the other xj with j 6∈ B are called nonbasic variables.

Optimality Conditions The main goal today is to build an algorithm for solving linear
programs by moving through a sequence of feasible solutions with decreasing objective value.
Specifically, we will move from basic feasible solution to basic feasible solution, following a
algorithm known as the simplex method.

The simplest thing we need to guarantee then is that we maintain feasibility. We say a
vector d ∈ Rd is a feasible direction at x ∈ P , if there exists θ > 0, such that x+ θd ∈ P .
For example, all of the arrows below denote feasible directions.

We are particularly interested in the feasible directions at a basic feasible solution. At a
BFS given by B with corresponding solution x = (xB, xB̄), its natural to consider moving in
a direction d that increases one coordinate j that was previously set to zero. Lets suppose
dj = 1 for some j ∈ B̄ and di = 0 for all other i ∈ B̄.

14

Since we want to maintain feasibility moving in the direction d, we require A(x+θd) = b.
Since x is feasible with Ax = b, we must have Ad = 0. Hence

0 = Ad = ABdB + Ajdj = ABdB + Aj.

Therefore, we must have dB = −A−1
B Aj. Refer to this direction has the jth basic direction.

So far, we have guaranteed that moving in his direction does not violate the equality
constraints Ax = b. Moreover it cannot violate the negativity constraints for any nonbasic
i ∈ B̄, since we have di ≥ 0. However, this is still not enough to conclude that the jth
basic direction is a feasible direction since we may violate a basic variables nonnegativity
constraint. In particular, we consider this in two cases:

(a) Suppose that the current BFS x is nondegenerate. That is, xB > 0 strictly holds. Then
we know that for small enough θ, we must also have xB + θdB > 0 still holds. Hence
the jth basic direction is a feasible direction.

(b) Supposing that the current BFS is degenerate, we cannot make a similar guarantee.
If some basic variable xB(i) = 0 while the direction has dB(i) < 0, then moving any
positive amount in the direction dB will lead to an infeasible solution.

For today, we will carry on assuming that all the points visited are nondegenerate as a
simplifying assumption. In the following recitation, we will return to this sticking point and
fix out methodology to work regardless of whether degeneracy occurs.

So assuming the BFS x is nondegenerate, we find that the basic directions are all feasible.
Then the next important question is how the objective value changes as we move in the jth
basic direction d. For any θ > 0, we find that the change in objective value is given by

cT (x+ θd)− cTx = θcTd = θ(cTBdb + cjdj) = θ(cj − cTBA−1
B Aj).

Hence the rate of change is given by cj − cTBA−1
B Aj where the cj term corresponds to the

improvement from increasing the jth coordinate to be nonzero and the−cTBA−1
B Aj component

corresponds to the cost of compensating in the basic variables necessitated by the constraint
Ax = b. This quantity will repeatedly occur, so we give it a name: the reduced cost of the
jth basic direction is

c̄j = cj − cTBA−1
B Aj.

Collecting these values for all j, gives a vector of reduced costs c̄ ∈ Rd.
Notice that each i ∈ B must have a reduced cost of zero. This follows since A−1

B Ai must
equal the ith unit vector ei, giving

c̄i = ci − cTBA−1
B Ai = ci − cTBei = ci − ci = 0.

In the following result, we see that the reduced cost vector gives us conditions for when
a basic feasible solution is a minimizer of the given linear program. This characterization is
exact when the given BFS is nondegenerate.

Theorem 5.1. Consider a basic feasible solution x given by basis B with reduced costs c̄.
(a) If c̄ ≥ 0, then x is optimal.
(b) If x is optimal and nondegenerate, then c̄ ≥ 0.

15

Proof. We prove these one at a time.

(a) Suppose c̄ ≥ 0 and consider any y ∈ P = {x | Ax = b, x ≥ 0}. Consider the direction
d = y − x. Since both x and y are feasible, we have Ad = Ay − Ax = b− b = 0. This
equality can be written as

ABdB +
∑
i∈B̄

Aidi = 0

by considering the basic and nonbasic variables separately. Since AB is invertible, we
can rewrite this as

dB =
∑
i∈B̄

−A−1
B Aidi.

Hence we can write the objective change of moving in the direction d as

cTd = cTBdB +
∑
i∈B̄

cidi =
∑
i∈B̄

(ci − cTBA−1
B Ai)di =

∑
i∈B̄

c̄idi.

Since we have c̄ ≥ 0 and di ≥ 0 for each i ∈ B̄, this sum must be nonnegative. Thus
cT (y − x) = cTd ≥ 0. Thus x is optimal.

(b) Suppose x is a nondegenerate basic feasible solution and that some c̄j < 0. Then the
jth basic direction d is a feasible direction (since x is nondegenerate) and moving in
this direction decreases the objective value at a rate of c̄j. Hence x − θd is a feasible
point with lower objective than x, and consequently x is not optimal.

From this, we say a basis B is optimal if the following two conditions hold

A−1
B b ≥ 0

cT − cTBA−1
B A ≥ 0

which correspond to feasibility and optimality of the related basic solution.

Moving To Adjacent BFS Suppose we are at a nondegenerate basic feasible solution x
and want to move in the jth basic direction d. Nondegeneracy ensures that this direction is
feasible, so some θ > 0 has x+θd ∈ P . Lets consider the largest θ that allows us to maintain
feasibility, denoted by θ∗, in two cases.

(a) Suppose all di ≥ 0. Then no nonnegativity constraint will ever be violated by increasing
the value of θ. Since d was defined to have Ad = 0, we can then conclude that the
entire ray {x+ θd | θ > 0} is feasible. Hence we have θ∗ =∞.

(b) If some di < 0, then the nonnegativity constraint xi +θdi ≥ 0 provides an upper bound
on how large θ can be. Namely we have θ∗ ≤ −xi/di. Since the equality constraints
are always satisfied, the largest possible value for θ∗ is given by

θ∗ = min
{i|di<0}

−xi/di.

16

Notice that the nonbasic variables all have di ≥ 0 by definition (in fact, they are all
zero except for dj = 1). Thus we only need to consider the basic variables in the
above formula. Then we can conclude that θ∗ > 0 since we have assumed that all basic
variables have xB(i) > 0 through nondegeneracy.

Lets suppose we are in case (b) above and can only move a finite amount θ∗ in the jth
basic direction. Some l ∈ B must attain the maximum defining θ∗ and so that coordinate
must have

(x+ θ∗d)l = 0

while the jth coordinate which used to have value zero now has

(x+ θ∗d)j = θ∗j > 0.

Thus the point x + θ∗d can be described by removing one coordinate l from the basis of x
and adding in the coordinate j. Hence we have a new basis B′ = B ∪ {j} \ {l}. Below we
verify that B′ is indeed a basis and corresponds to x+ θ∗d.

Theorem 5.2. The columns AB(i) for i 6= l and Aj are linearly independent and therefore
B′ is a basis. Further, B′ has associated basic feasible solution x+ θ∗d.

Proof. First we observe that the columns AB′ are linearly independent if and only if the
columns o A−1

B AB′ are linearly independent (since we only applied an invertible map). For
each i ∈ B \ {j}, we have

A−1
B Ai = ei

where ei is the ith standard basis vector. Hence all of the columns i 6= j have a zero in
the lth component. However, A−1

B Aj is equal to −dB by definition and we know that dl is
nonzero by definition. Thus A−1

B Aj is independent of from all the other A−1
B Ai.

We say that a bases B and B′ (like those just constructed) are adjacent if they differ by
one element swap.

The Simplex Method The simplex method works iteratively by moving from basic feasi-
ble solution to an adjacent basic feasible solution with lower objective value. This is repeated
until no adjacent bases offer any improvement, which happens when c̄ ≥ 0. Thus we must
be at an optimal basis. This is formalized below.

1. Let B denote the current basis with associated solution xB = A−1
B b, xB̄ = 0.

2. Compute the reduced costs c̄j = cj − cTBA−1
B Aj for each j ∈ B̄.

If c̄ ≥ 0, then TERMINATE with x as an optimal solution.

3. Compute a basic direction d = −A−1
B Aj for some j with c̄j < 0.

If d ≥ 0, then TERMINATE with x+ θd as a ray verifying the objective is −∞.

4. Compute θ∗ = min{i|di<0}−xi/di.

5. Let l be some index with θ∗ = −xl/dl. Form a new basis for the next iteration
B′ = B ∪ {j} \ {l} with associated solution y = x+ θ∗d.

17

The two critical assumptions to make the above procedure work are that we (i) have
an initial basic feasible solution to start from and (ii) never encounter a degenerate basic
feasible solution. These two difficulties will be addressed in the coming recitations to give a
more robust algorithm that applies to any linear programming problem.

Correctness Assuming Nondegeneracy

Theorem 5.3. Assuming that all basic feasible solutions of P = {x | Ax = b, x ≥ 0} are
nondegenerate, the simplex method terminates in finite time with either
(a) an optimal basis B and associated basic feasible solution x∗

(b) a vector d satisfying Ad = 0, d ≥ 0, and cTd < 0, and so the optimal cost is −∞.

Proof. If either of the termination conditions are met, our previous discussion verifies that
x is optimal (if we terminated in step 2) or the entire ray x+ θd is feasible with decreasing
objective value (if we terminate in step 3). All that we need to show is that eventually one
of these conditions is met.

At each iteration the algorithm moves a positive amount θ∗ in the direction d with cTd <
0. Therefore each iteration moves to a basic feasible solution with strictly lower objective
value than any previous iteration. Since there are only finitely many basic feasible solutions
and we can never visit a solution twice, the algorithm must terminate eventually.

6 Recitation 6: The Simplex Method II

Today’s recitation continues building the simplex method for solving linear programs:

minimize cTx
subject to Ax = b

x ≥ 0.

Last time, we developed the following algorithm:

1. Let B denote the current basis with associated solution xB = A−1
B b, xB̄ = 0.

2. Compute the reduced costs c̄j = cj − cTBA−1
B Aj for each j ∈ B̄.

If c̄ ≥ 0, then TERMINATE with x as an optimal solution.

3. Compute a basic direction d = −A−1
B Aj for some j with c̄j < 0.

If d ≥ 0, then TERMINATE with x+ θd as a ray verifying the objective is −∞.

4. Compute θ∗ = min{i|di<0}−xi/di.

5. Let l be some index with θ∗ = −xl/dl. Form a new basis for the next iteration
B′ = B ∪ {j} \ {l} with associated solution y = x+ θ∗d.

We made two main assumptions in our motivation of this method, which we will re-
move this time: (i) We have an initial basic feasible solution and (ii) We never encounter a
degenerate basic feasible solution.

18

Dual Solutions In The Simplex Method First, we remark that finding an optimal
basis for a linear program (as done by the simplex method) provides us with a dual feasible
solution as well. In particular, last time we saw that a basis B is optimal if it corresponds
to a feasible point

xB = A−1
B b ≥ 0

xB̄ = 0

and has nonnegative reduced costs

c̄T = cT − cTBA−1
B A ≥ 0.

For this, we can extract a dual feasible solution y satisfying c − ATy ≥ 0 by rewriting the
reduced costs as

c̄ = c− ATA−TB cB ≥ 0

and so y = A−TB cB is dual feasible. Recalling the optimality conditions for conic programs
(from lecture), a pair of feasible primal dual solutions x and y are optimal if they satisfy
complementary slackness xT (c − ATy) = 0. Indeed the points given by any basis B satisfy
this by definition since each i ∈ B has c̄i = 0 and each i ∈ B̄ has xi = 0.

From this perspective, the simplex method can be viewed as maintaining a primal feasible
solution while pursuing a dual feasible solution c̄ ≥ 0. In a future recitation, we will return
the this idea and give a variant of the simplex method that works from the dual perspective.
It would maintain a dual feasible solution while pursuing primal feasibility.

Computational Concerns As written the simplex method needs to solve three linear
systems at each iteration. Namely, it solves

ABxB = b

AT
By = cB

ABd = −Aj

Using Gaussian elimination, each of these systems would require O(m3) operations to
solve. We can do much better by using the structure we know about the basis AB.

The most common presentation of the simplex method is done by using a tableau. This
approach stores the quantities A−1

B A, A−1
B b, and A−TB cB in a table and then performs ele-

mentary row operations to update the table corresponding to each pivot adding some index
j and removing some l from the basis B. This requires O(md) memory and only O(m2)
operations to update the tableau.

Rather than focusing on this tableau approach, we consider a method that only stores a
representation of A−1

B . This can be done in O(m2) memory and will still only require O(m2)
operations to update.

Consider some iteration of the simplex method adding an index j and removing an index
l. Let d = −A−1

B Aj and so we have dl < 0. Then observe that

Aj

(
1

−dl

)
+
∑

i∈B\{l}

Ai

(
di
−dl

)
= Al.

19

Hence A−1
B′Al = η where ηj = 1/− dl and all other ηi = di/dl.

Thus for Ek = [e1 . . . ej−1, η, ej+1 . . . em], we have

AB′Ek = AB.

Inverting this equation yields
A−1

B′ = EkA
−1
B .

Thus we can update the inverse of our basis by applying a simple matrix with only
one column differing from the identity matrix. Applying this update only takes O(m2)
operations and memory. Then all of the necessary operations for the simplex method can
be accomplished using matrix vector products with this (that also take at most O(m2)
operations).

Alternatively, the basis matrix after k iterations can have its inverse matrix written as

A−1
Bk

= EkEk−1 . . . E2E1A
−1
B1

Periodically, we can collapse all of the matrices Ek and compute the inverse matrix for the
current Bk, and the begin building up a product form expression again.

Finding An Initial Feasible Solution One of the assumptions we have made so far
in our discussion of the simplex method is that an initial basic feasible solution is known.
However this does not hold in general. Indeed it may even be the case that no feasible
solution (let alone basic feasible solution) exists and so the method needs to be adapted to
handle this.

We accomplish this by using a two phase version of the simplex method. In the first
phase, we will apply the simplex method to an auxiliary optimization problem that will
either verify infeasibility or give us an initial basic feasible solution. In the second phase, we
can then apply the simplex method to solve the original linear program.

Without loss of generality, we can suppose that b ≥ 0 (by multiplying any equality
constraint with a negative bi by −1). Then we consider the following optimization problem:

minimize z1 + z2 + · · ·+ zm
subject to Ax+ z = b

x, z ≥ 0

which has m new auxiliary variables z. Notice that (x, z) = (0, b) is a feasible solution to
this linear program and is in fact a basic feasible solution (with basis given by selecting all
of the z variables). Hence we have the necessary initial point to apply the simplex method
to this problem.

First, suppose that this auxiliary optimization problem has strictly positive minimum
value. Then the polyhedron P = {x | Ax = b, x ≥ 0} must be nonempty since any x ∈ P
has (x, 0) feasible for the auxiliary problem with objective value zero. Hence, if our first
phase of computation finds positive objective value, we can certify that the original linear
program is infeasible.

Now suppose that this auxiliary problem has non positive minimum value. Since we
have the constraints that z ≥ 0, any feasible solution must have nonnegative objective

20

value. Hence the auxiliary problem minimizes with value zero. Moreover, we know that any
minimizing (x, z) must have z = 0 and so x ∈ P since Ax+ 0 = b.

Thus applying the simplex method to solve this auxillary problem yields a feasible solu-
tion. In fact, it must yield a basic feasible solution of P since the simplex method always
returns a basic feasible solution. That is, the returned (x, z) will have at most m nonzero x
and z indices that must have linearly independent columns, and so x has at most m nonzero
x entries with linearly independent columns.

Bring this all together gives us a method for solving generic linear programs (infeasible,
unbounded, or finite-valued) without assuming any knowledge of feasible solutions a priori.

Cycling From Degenerate Basic Feasible Solutions Lastly we consider the problem
of degenerate basic feasible solutions in the simplex method. Our proof of correctness relied
on every vertex visited being nondegenerate. This allowed us to assume that θ∗ was always
positive and so a positive decrease in objective value was attained at each iteration.

However when a BFS is degenerate, the simplex method may find that θ∗ = 0 and so the
subsequent basis B∪{j}\{l} will correspond to the same BFS as the original basis B. This
raises the concern that the simplex method may never terminate, instead cycling through a
sequence of bases that all correspond to the same solution.

Sadly, this can happen. To construct such an example, we need to fully specify how the
simplex method will handle the freedom it has in choosing an index j with c̄j < 0 and an
index l with θ∗ = −xl/dl. These are known as pivoting rules.

Two common heuristics for choosing j are

• Select j with most negative c̄j.

• Select j with steepest rate of decrease c̄j/‖d‖ where d = −A−1
B Aj.

Under either of these choices and any selection rule for l, infinite cycling can occur (and so
the simplex method is not guaranteed to work). As an example see https://www.maths.

ed.ac.uk/hall/MS-96/MS96010.pdf

However, Robert Bland (from Cornell ORIE) showed that if careful pivoting rules are
used then we can guarantee no basis is ever visited twice. In particular, Bland’s pivoting
rules are the following:

• Select j with the smallest index number satisfying c̄j < 0.

• Select l with the smallest index number satisfying θ∗ = −xl/dl.

Theorem 6.1. Under Bland’s pivoting, each basis B is visited at most once by the simplex
method. Hence the simplex method terminates in finite time.

Proof. See https://people.orie.cornell.edu/dpw/orie6300/Lectures/lec13.pdf.

Lastly, we remark on a conceptually different way to handle degeneracy than using pivot-
ing rules. Notice that perturbing the vector b slightly will almost surely remove all degeneracy
from the problem. Namely, consider a Gaussian random vector g N(0, I) and some small ε.
Then setting

b̄ = b+ gε

21

https://www.maths.ed.ac.uk/hall/MS-96/MS96010.pdf
https://www.maths.ed.ac.uk/hall/MS-96/MS96010.pdf
https://people.orie.cornell.edu/dpw/orie6300/Lectures/lec13.pdf

we have that each basis corresponds to the basic solution

x̄B = A−1
B (b+ gε) = xB + A−1

B gε.

Since this last term is gaussian, we almost surely have no entry in x̄B takes on value zero.
Hence no basic feasible solution is degenerate.

Taking sufficiently small epsilon, one can solve a nearly equivalent problem without wor-
rying about degeneracy. Ever better, one can consider ε symbolically to be an infinitesimal
amount, smaller than any constant, and then use symbolic arithmetic throughout the sim-
plex method. The final solution from such an approach would then also be a solution for
the original problem.

7 Recitation 7: CVX Programming

This recitation was given by Lijun Ding. See https://people.orie.cornell.edu/dsd95/

orie6300.html where the code used in class is provided.

8 Recitation 8: Duality in Linear Programming

In today’s recitation, we are going to discuss two ways of viewing the dual of a linear program.
Then informed by these methods we will give a dual simplex method, mirroring the primal
simplex method discussed in previous recitations.

Geometry of Dual Linear Programs Consider the primal problem

minimize cTx
subject to aTi x ≥ bi for i = 1 . . .m

where x ∈ Rn and the vectors ai span all of Rn. Then the corresponding dual problem is

maximize pTx
subject to

∑
piai = c

p ≥ 0.

A vertex of the primal feasible region is given by selecting n of the linearly independent
constraints I ⊆ [m] to be met with equality. Then the corresponding solution is the unique
solution to the system aTi x = bi for i ∈ I. For the sake of gaining insight in to what dual
solutions to this problem look like, we will assume the resulting xI is nondegenerate (that
is, all i 6∈ I have aTi x > bi strictly).

For this primal solution xI to be optimal, the strong duality of linear programs ensures
that there exists a corresponding dual solution p. Namely, together these need to satisfy the
optimality conditions

aTi xI ≥ bi

pi for all i 6∈ I

22

https://people.orie.cornell.edu/dsd95/orie6300.html
https://people.orie.cornell.edu/dsd95/orie6300.html

∑
piai = c

p ≥ 0

for primal feasibility, complementary slackness, and dual feasibility, respectively.
From these conditions, we can geometrically identify what it means to be dual feasible.

The complementary slackness condition ensures that only the pi corresponding to constraints
in I play a role in our solution. Then the dual feasibility constraints say that c is a conic
combination of the vectors ai for i ∈ I. An example of this condition is given below, where
each basic solution can easily have its primal and dual feasibility checked as whether the
point lies in the feasible region and whether the vector c pointing up lies in the cone generated
by ai.

Shadow Prices from Dual Linear Programs A second way to view the dual solutions
of a linear program comes in the form of shadow prices. Consider a standard form linear
program

minimize cTx
subject to Ax = b

x ≥ 0

Lets suppose that this problem has a nondegenerate optimal solution x corresponding to
the basis B. Then we know that the primal and dual feasibility conditions hold:

A−1
B b > 0

c− cTBA−1
B A ≥ 0.

Then consider the perturbed optimization problem given by replacing b by b+d for some
small d. Notice the objective value of this perturbed problem is given by val(b+d). Then we
observe that for sufficiently small d, we will not have violated the primal feasibility condition

A−1
B (b+ d) > 0.

23

Further, the dual feasibility conditions are independent of the right-hand side vector that
we select. Hence dual feasibility still holds for b + d. Thus B is still an optimal basis for
slightly perturbed problem instances. In particular, we then know that for small values of d

val(b+ d) = pT (b+ d)

where p = cTBA
−1
B are the dual values associated with the basis B. That is, the value function

of the linear program is linear near b. Moreover, the coefficients of this linear function are
given exactly by the dual variables.

From this, we can interpret the dual values as indicating the importance of each constraint
in the original problem. For example, suppose that each bi corresponded to a limit how much
of material i a factory has to work with. Then the dual variables indicate that providing
the factory with one additional unit of material i would improve the objective value by pi.
Hence, these values are often referred to as shadow prices, as they establish the marginal
value of each constraint.

The Dual Simplex Method Lastly, we consider a variation of the simplex method that
works on the dual problem rather than the primal. Recall the simplex method as previously
developed was given by

1. Let B denote the current basis with associated solution xB = A−1
B b, xB̄ = 0.

2. Compute the reduced costs c̄j = cj − cTBA−1
B Aj for each j ∈ B̄.

If c̄ ≥ 0, then TERMINATE with x as an optimal solution.

3. Compute a basic direction d = −A−1
B Aj for some j with c̄j < 0.

If d ≥ 0, then TERMINATE with x+ θd as a ray verifying the objective is −∞.

4. Compute θ∗ = min{i|di<0}−xi/di.

5. Let l be some index with θ∗ = −xl/dl. Form a new basis for the next iteration
B′ = B ∪ {j} \ {l} with associated solution y = x+ θ∗d.

This procedure maintains a basis that is primal feasible A−1
B b and pursues a basis that

is dual feasible c − cTBA
−1
B A ≥ 0. This is done by repeatedly picking an index j with

cj − cTBA−1
B Aj < 0 to add in to the basis, which forces some xl to take value zero and thus

leave the basis.
We could give a mirrored algorithm if we had an original basis that was dual feasible

rather than primal feasible. Namely, we could maintain a basis with c − cTBA−1
B A ≥ 0 and

pursue a basis that is primal feasible A−1
B b ≥ 0. So at each iteration, we would need to pick

an index l failing to be satisfy the nonnegativity constraint (A−1
B b)l < 0. Then as we remove

l from the basis, some j will have cj − cTBA−1
B Aj take value zero and thus leaves the basis.

This inverted version of the simplex method is formalized as follows

1. Let B denote the current basis with associated solution c̄ = c− cTBA−1
B A.

2. Compute the primal values xB = A−1
B b.

If xB ≥ 0, then TERMINATE with this as an optimal solution.

24

3. Compute the direction v = −eTl A−1
B A for some l with xl < 0.

If v ≥ 0, then TERMINATE with c̄+ θv as a ray verifying the objective is ∞.

4. Compute θ∗ = min{i|vi<0}−c̄i/vi.

5. Let j be some index with θ∗ = −xj/dj. Form a new basis for the next iteration
B′ = B ∪ {l} \ {j} with associated solution c̄′ = c̄+ θ∗v.

This method is equivalent to reformulating the dual linear program into standard form
and then applying the regular simplex method. In particular, consider the formulation

minimize bTp
subject to c− ATp = s

s ≥ 0, p free

Every basis for this problem comes from selecting n−m of the slack variables s to allow to
be nonzero. Zero slack means that the corresponding regular dual constraint c − ATp ≥ 0
is tight. Then by complementary slackness, this related primal xi is allowed to be nonzero.
Hence selecting n−m slack variables for a dual basis, exactly defines a choice of m indices
for a basis of the original linear program.

From this one-to-one mapping between primal and dual formulation bases, we can directly
read the dual simplex method presented above as an the simplex method applied to this
standard form version of the dual linear program. Hence, the dual simplex method still
corresponds geometrically to stepping from corner to corner of a polyhedron (just using the
dual polyhedron instead of the primal polyhedron).

Finally, we remark that the dual simplex method is a reasonable choice to use if a dual
feasible solution is known, but not a primal feasible solution. This would allow you to skip
solving an additional initialization problem as we discussed in Recitation 6. One example
of when this would occur is if you are solving many perturbed versions of the same linear
program. If you want to solve the original linear program for many alternative right-handside
vectors b1, . . . , bk, then each one would need its own primal initial solution for the normal
simplex method. However, as observed in our discussion of shadow prices, modifying the
vector b has no effect on dual feasibility. Thus we can use the optimal dual solution from
the original linear program as a starting point for each of our perturbed problems. This has
the additional benefit that if b1 is near b, we expect this initialization to be near optimal and
(hopefully) require very few pivots to reach optimality.

9 Recitation 9: Transportation Problems

In today’s recitation and the following one, we are going to discuss applying the simplex
method to solve network optimization problems. Today we will specifically consider the
following transportation problem.

Suppose there is a set, S, of suppliers, each with supply si and a set, D, of customers each
with demand dj that must be met. Further, suppose that each unit shipped from supply
node i ∈ S to demand node j ∈ D incurs a cost cij . The goal is then to find a minimum-cost
shipping scheme that satisfies all the demand and supply restrictions.

25

Clearly, this problem is only feasible if
∑
si ≥

∑
dj. Without loss of generality, suppose∑

si =
∑
dj since otherwise we can set a dummy demand node k with dk =

∑
si −

∑
dj.

Then we can formulate this as an linear program by

minimize
∑

i∈S,j∈D cijxij
subject to

∑
j∈D xij = si for all i ∈ S∑
i∈S xij = dj for all j ∈ D

xij ≥ 0

One may additionally want to constrain that the variables xij are integral, depending
on the type of commodity being transported. For our purposes, we not consider this extra
complexity.

Observe that the constrains of this linear program are linearly dependent as written. This
is because adding all of the rows of the first constraint set gives the same result as adding
all of the rows of the second constraint set:∑

si =
∑
i,j

xij =
∑

dj.

Hence, we can delete any one of the constraints without changing the feasible region. There-
fore, letting m = |S| and n = |D|, we really only have n+m− 1 constraints.

This problem can be represented graphically where G is a bipartite graph with vertex set
S ∪D and edges E = S ×D. Note then that the decision variables correspond to each edge
in the graph. Hence basic solutions to this linear program correspond to choosing n+m− 1
edges to give non-zero value, inducing a subgraph.

Lemma 9.1. The subgraph corresponding to a basic solution of the linear program does not
contain any cycles.

Proof. Consider any cycle C among in the graph defining our problem. Notice that since the
graph is bipartite, the cycle C must have even length. Then define a vector h with values
+1 and −1 alternating along each edge in the cycle. This vector must satisfy

ACh = 0

since each node has one incoming edge and one out going edge with values −1 and 1. Hence
the edges of any cycle have linearly dependent columns, and so no basis could include a
cycle.

From this we conclude that the subgraph corresponding to each basis must be a tree
(that is, it is connected and acyclic). Below we formalize why this is the case.

Lemma 9.2. (a) A graph G is a tree if and only if
(b) it is acyclic with n+m− 1 edges if and only if
(c) it is connected with n+m− 1 edges.

Proof. We prove this inductively. Supposing G has |V | = 1 nodes, then trivially all three
conditions holds. Now consider a graph with |V | > 1 and suppose this equivalence holds for
all smaller graphs.

26

(a)⇒(b) Every tree has at least one leaf node, that is a node with a single edge incident to it
(check this yourself). So we can construct a smaller tree G′ by deleting a leaf node and
its incident edge from G. Our inductive hypothesis ensures G′ is acyclic with n+m−2
edges. Then adding this left back in cannot create a cycle, so G is acyclic with n+m−1
edges.

(b)⇒(c) Suppose to the contrary that G is not connected. Then we can consider the connected
components of G, given by G1 . . . Gk. Each of these components is then a tree (since
they are acyclic and connected). Applying our inductive hypothesis shows each of
them has |Vk|−1 edges. However, this implies that all together they have

∑
|Vk|−1 =

n+m− k edges, which contracts our assumption that the graph has n+m− 1 edges.

(c)⇒(a) Suppose to the contrary that the graph G has a cycle C. Then we can delete any edge
from C without causing the graph to become disconnected. Repeating this process
will eventually produce a subgraph of G that is acyclic and connected (and thus has
n + m − 1 edges). However, the original graph had n + m − 1 edges. Hence it must
not have had any cycles.

Thus each basis can be viewed as a spanning tree on the set of nodes S ∪ D for our
transportation problem. The reduced costs corresponding to such a basis B are given by
considering the dual linear program:

maximize sTu+ dTv
subject to ui + vj ≤ cij for all i ∈ S, j ∈ D.

For a given basis B, that is, spanning tree of the problem’s bipartite graph, we can easily
compute the related dual problem solution as follows:

Recall that the primal constraints are linearly dependent. Hence the dual variables above
are linearly dependent, and so we can set one of them arbitrarily. Then we can compute the
dual variable for each node adjacent to that one (in the spanning tree B) by the corresponding
edge equation ui+vj = cij. Note this equation must be met with equality by complementary
slackness for the basis B. Repeating this process iteratively across the spanning tree will
determine the dual solution corresponding to B without needing to compute any matrix
inverse.

Hence we can compute reduced costs for the simplex method more efficiently than the
method usually does. Putting this all together gives a more efficient version of the simplex
method that only needs to store a spanning tree, rather than an inverse matrix. Formally,
we have:

1. Let B denote the current spanning tree (basis).

2. Choose a dual variable to set arbitrarily (for example, u1 = 7). Solve for the other dual
variables to maintain complementary slackness: if xij is in the basis, then ui +vj = cij.

3. For every nonbasic edge, compute the reduced costs c̄ij = cij − ui − vj.

4. Pick any ij with c̄ij < 0. Let C be the cycle in B ∪ {ij}.

27

5. Going around C, increase the flow on xij, then decrease on the next edge, then increase,
and so on. Let δ = min{fk | k is a decreasing edge}. Increase all forward edges by δ
and decrease the decreasing edges by δ. Add ij to the spanning tree and remove an
edge that achieves the minimum.

10 Recitation 10: Network Flows

In today’s recitation, we will continue discussing applying the simplex method to solve
network optimization problems. Today we consider the following network flow problem
(generalizing the transportation problem from last week).

Suppose we have a directed graph G = (V,E) with n nodes and m arcs. Additionally,
there is a vector b of supplies available at each node (where bi < 0 corresponds to a demand).
Finally, there is a vector of costs c such that for each edge e ∈ E, ce is the cost of sending
one unit of flow along edge e. Assume the graph is connected and∑

bi = 0,

i.e., the total supply equals the total demand.
Note that the transportation problem discussed last week can be considered a special

case of problems under this framework. (Set of supply nodes, S = i ∈ V : bi > 0, demand
nodes D = V S,E = (i, j) : i ∈ S, j ∈ D.) A vector of flows, f ∈ Rm is feasible for this
problem if f ≥ 0 and the flow constraints for each vertex i are satisfied, i.e.:∑

ij∈E

fij −
∑
ji∈E

fji = bi

If we define our matrix A by

Aik =


1 if i is the start node of edge k

−1 if i is the end node of edge k

0 otherwise,

then we can formulate this as an linear program by

minimize cTf
subject to Af = b

f ≥ 0.

Just like with the transportation problem, it is easy to verify that this matrix is not full
rank, but by deleting one constraint row arbitrarily, it will be full rank assuming the graph
is connected.

Cycles and Basic Feasible Solutions. Much like we saw last week for the special case
of the transportation problem subproblem, edges that form a cycle have linearly dependent
columns.

28

Lemma 10.1. For any undirected cycle C in G, the columns corresponding to the arcs of C
are linearly dependent.

Proof. Define a vector h with value +1 on each forward arc in the cycle and −1 on each
backwards arc in the cycle. This vector must satisfy

ACh = 0

since each node has one incoming edge and one out going edge with values −1 and 1. Hence
the edges of any cycle have linearly dependent columns.

From this we conclude that the undirected subgraph corresponding to each basis must
be a tree (that is, it is connected and acyclic). This follows from our lemma from last week
that showed trees are exactly acyclic graphs with n−1 edges. Thus we have a combinatorial
view of the basis being used at each iteration of the simplex method applied to this network
problem.

Reduced Costs and Network Simplex. The reduced costs corresponding to such a
basis (spanning tree) B are given by considering the dual linear program:

maximize bTw
subject to wi − wj ≤ cij for all ij ∈ E.

For a given basis B, we can compute the complementary dual solution as follows:
Recall that the primal constraints are linearly dependent. Hence the dual variables above are
linearly dependent, and so we can set one of them arbitrarily. Then we can compute the dual
variable for each node adjacent to that one (in the spanning tree B) by the corresponding
edge equation ui+vj = cij. Note this equation must be met with equality by complementary
slackness for the basis B. Repeating this process iteratively across the spanning tree will
determine the dual solution corresponding to B without needing to compute A−1

B , which will
not be sparse like AB.

Hence we can compute reduced costs for the simplex method more efficiently than the
method usually does. Putting this all together gives a more efficient version of the simplex
method that only needs to store a spanning tree, rather than an inverse matrix. Formally,
we have the following generalization of the network simplex method from last week:

1. Let B denote the current spanning tree (basis).

2. Choose a dual variable to set arbitrarily (for example, u1 = 7). Solve for the other dual
variables to maintain complementary slackness: if xij is in the basis, then ui +vj = cij.

3. For every nonbasic edge, compute the reduced costs c̄ij = cij − ui − vj.

4. Pick any ij with c̄ij < 0. Let C be the cycle in B ∪ {ij}.

5. Going around C, increase the flow each forward edge and decrease it on each backwards
arc. Let δ = min{fk | k is a backwards edge}. Increase all forward edges by δ and
decrease the decreasing edges by δ. Add ij to the spanning tree and remove an edge
that achieves the minimum.

29

	Recitation 1: Linear Images of Polyhedra
	Recitation 2: Sufficient Optimality Conditions for Convex Optimization
	Recitation 3: Linear and SOC Program Modeling
	Recitation 4: Polyhedral Geometry
	Recitation 5: The Simplex Method I
	Recitation 6: The Simplex Method II
	Recitation 7: CVX Programming
	Recitation 8: Duality in Linear Programming
	Recitation 9: Transportation Problems

