
Lecture Notes for ORIE 6300: Mathematical
Programming I

Damek Davis∗

December 13, 2023

Contents

1 This Course 3
1.1 Prerequisites . 3
1.2 Prior course website . 3
1.3 Acknowledgements . 4

2 What is Optimization? 4
2.1 A Mathematical Program . 4
2.2 Fundamental Structures: Linearity and Convexity 5

2.2.1 Aside: Ubiquity of Linear Objectives 6
2.3 Basic Consequences of Convexity . 6
2.4 Exercises . 6

3 First-Order Optimality and Normal Cones 7
3.1 Differentiability and the Gradient . 8
3.2 Normal Cones and First-Order Optimality: A First Look 8
3.3 Exercises . 11

4 Start of Duality: Projections and Hahn-Banach 12
4.1 Projections: Existence, Uniqueness, and Characterization 13
4.2 Hahn-Banach: The Separating Hyperplane Theorem 13
4.3 Exercises . 14

5 Conic Programs 15
5.1 Cones . 15

5.1.1 Cones of Particular Significance . 16
5.2 Conic Optimization Problems . 17

5.2.1 The Primal Conic Problem . 18

∗School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850, USA;
people.orie.cornell.edu/dsd95/.

1

5.3 The Conical Form of a Convex Program . 18
5.4 Exercises . 19

6 Farkas’ Lemma 19
6.1 Dual Cones . 21
6.2 A Corollary to Hahn-Banach and Farkas Lemma 22
6.3 Exercises . 23

7 Strong Duality 24
7.1 Linear Programs . 25
7.2 Asymptotic Strong Duality . 27
7.3 Exercises . 31

8 Sensitivity: The Basics 33
8.1 The Fréchet Subdifferential . 36
8.2 Subgradients and Dual Solutions . 37
8.3 Exercises . 38

9 Subgradients: Existence, Optimality, and Calculus 39
9.1 Existence of Subgradients . 40
9.2 The Optimality Conditions of Conic Programming 42
9.3 Optimality Conditions in General . 44
9.4 Calculus . 44
9.5 Exercises . 47

10 First-Order Models and Algorithms 50
10.1 From Global to Local Models . 52

10.1.1 Linear Models: Gradient Descent and the Subgradient Method 52
10.1.2 Beyond Linear: Clipped, Aggregated, Projected, Proximal, and Max-

linear Models . 55
10.1.3 Two Small Examples . 60

10.2 A First Algorithm . 62
10.2.1 Terminology: Iteration Complexity and Rates of Convergence 62
10.2.2 The Effect of Solving the Quadratically Penalized Subproblem 63
10.2.3 Quadratically Accurate Models and Gradient Descent 65
10.2.4 Linearly Accurate Models and the Subgradient Method 66

10.3 An Acceleration for Quadratically Accurate Models 69
10.3.1 Proof of Proposition 10.15 . 71

10.4 Lower Complexity Bounds . 72
10.5 Stochastic Methods . 74
10.6 Appendix: Proofs of Propositions 10.1 and 10.2 81
10.7 Exercises . 82

2

1 This Course

Optimization is a broad mathematical discipline widely used in many applied sciences, in-
cluding operations research, machine learning, signal processing, and statistics. The system-
atic study of optimization began with the calculus of variations. Since then, the subject
has flourished: from the celebrated simplex method in linear programming to the mature
theories of duality and algorithmic complexity in convex optimization, it has now enjoyed
over 60 years of theoretical and computational advances. Key to these advances were the
development of nonsmooth calculus and the recognition of its role in first-order optimality
conditions. Based on duality, nonsmooth calculus, and numerical linear algebra techniques,
the subject now enjoys an extensive algorithmic toolbox containing practical and provably
“efficient” numerical methods. The purpose of this class is to give you a firm working knowl-
edge of the techniques and results of modern optimization by developing the following set of
core skills:

• Structure and special cases: recognize and exploit convexity and its special cases (linear
and conic programming); recognize well-structured nonconvex problems (smoothness,
composite structure, and regularity conditions).

• Duality: learn to “take a dual;” recognize when “strong duality” holds; exploit duality
in algorithms.

• Nonsmooth calculus: compute first-order necessary optimality conditions with non-
smooth calculus (subdifferentials, normal cones, and the chain rule); compute the
sensitivity of optimization problems with respect to perturbations of input data (value
functions and Lagrange multipliers).

• Algorithms: learn a toolbox of algorithms (simplex, interior point, and first-order meth-
ods); choose appropriate algorithms by understanding tradeoffs induced by problem
structure; characterize algorithmic complexity; numerically implement algorithms.

1.1 Prerequisites

These notes assume familiarity with (both are URLs)

• This linear algebra review.

• Chapter 1.1 of Borwein and Lewis

It would help if you read these before the first class.

1.2 Prior course website

You can view the course website at https://people.orie.cornell.edu/dsd95/orie6300.
html.

3

https://people.orie.cornell.edu/dsd95/teaching/orie6300/Rec1.pdf
https://www.springer.com/gp/book/9780387295701
https://people.orie.cornell.edu/dsd95/orie6300.html
https://people.orie.cornell.edu/dsd95/orie6300.html

1.3 Acknowledgements

Jim Renegar’s ORIE 6300 course from Fall 2018 has influenced my presentation in these
notes.

2 What is Optimization?

Skills. Recognize and exploit convexity and its special cases

2.1 A Mathematical Program

This course is on mathematical programming, a phrase synonymous with optimization. The
term “mathematical programming” has (somewhat) fallen out of favor, but you will still
hear the word “programming” when referring to concrete problem classes, e.g., “linear pro-
gramming.”

The overarching goal of this course is to minimize or maximize a given function over a
constraint set. For us, the variables we optimize over will always live in Rd for some integer
d. Setting the stage, we wish to minimize a function f over the feasible region X . To state
this formally, we would write

minimize f(x)︸︷︷︸
objective function

subject to : x ∈ X︸︷︷︸
feasible region/
constraint set

(MP)

If x̄ “solves” (MP), we call it an optimal solution. Of course, this means that f(x̄) ≤ f(x)
for all other x ∈ X . We often use the notation argminx∈X f(x) to denote the set of optimal
solutions to a mathematical program. Similarly, we say that x̄ locally minimizes f over X
there is some ε > 0 so that f(x) ≥ f(x̄) for all x ∈ Bε(x̄).

In modern optimization, functions are extended valued in the sense that they take values
that may be real or infinite: R ∪ {−∞,+∞}. Thus it is common to move the constraint X
from (MP) into the objective by setting

F (x) =

{
f(x) if x ∈ X
+∞ otherwise.

We then shift our attention to minimizing F . We almost exclusively require functions never
to take the value −∞. With this convention, you can check that a point x̄ minimizes F if
and only if it minimizes f over X . To avoid thinking about infinite values, one might also
write f : X → R for the function F . In modern optimization, however, one associates points
in the domain of f with those taking finite values: dom(f) = {x ∈ Rd | f(x) < +∞}. A
function is called proper if it never takes value −∞ and dom(f) 6= ∅.

The most basic question one can ask about (MP) is whether it has a minimizer. Weier-
strass’ famous theorem provides an answer to this question.

4

Theorem 2.1 (Weierstrass). Let X be a closed set, and suppose f : X → R is continuous
and has bounded sublevel sets:

{x ∈ X : f(x) ≤ a} is bounded for all a ∈ R.

Then f has a minimizer.

Proof. Let x1, x2, . . . be a sequence in X with f(xk)→ inf f . The sequence f(xk) approaches
a number less than +∞ and is therefore upper bounded by a number a, meaning xk ∈ {x ∈
X : f(x) ≤ a}. This a-sublevel set is compact: it is bounded by assumption and closed due
to continuity. Hence, there exists a convergent subsequence xi1 , xi2 , . . . with x̄ = limj→∞ xij ,
and since X is closed, we have x̄ ∈ X . Therefore, by continuity f(x̄) = limj→∞ f(xij) = inf f ,
meaning x̄ minimizes f .

Mere attainment of the minimal value will not be our only goal in this course. We’re
more broadly interested in elucidating useful structures that help us answer questions about
the effort required to solve a problem or the behavior of solutions and optimal values under
perturbations. Linearity and, more generally, convexity will supply us with such answers.
We will focus most of our effort on these structures.

2.2 Fundamental Structures: Linearity and Convexity

Convex Not Convex

epi(f)

graph(f)

A linear program is a mathematical program
with a linear objective f(x) = cTx = 〈c, x〉
and a polyhedral constraint set, meaning X
consists of points satisfying a finite list of
linear equalities and inequalities. Such an
X is called a polyhedron. Linear programs
(LPs) are the most straightforward problem
class in the course.

More generally, we will be interested in
convex optimization: minimization of con-
vex functions over convex sets. Convexity is
a geometric property that is simple to state:

X is convex set if for all x, y ∈ X ,
the line segment between x and
y lies in X .

Algebraically, we would say: ∀x, y ∈ X , t ∈
[0, 1], it holds tx + (1 − t)y ∈ X . Beyond
sets, a function is convex if the region above
its graph called the epigraph, is convex:

a function f is convex if epi(f) =
{(x, t) : f(x) ≤ t} ⊆ Rd+1 is convex.

5

Perhaps more familiar is the equivalent algebraic condition: the set dom(f) is convex and
∀x, y ∈ dom(f), t ∈ [0, 1], it holds f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y). With these
definitions, we define a convex program as an (MP) wherein f and X are convex.

It would help if you convinced yourself of the equivalences thus stated; we will use them
freely throughout the course.

2.2.1 Aside: Ubiquity of Linear Objectives

Stepping back to (MP), the nonlinear objective f can always be replaced by a linear one:

min
x,t

t

subject to : x ∈ X
t ≥ f(x). (EPI)

For this problem, the feasible region is a higher dimensional set X̂ = {(x, t) | x ∈ X , f(x) ≤
t} ⊆ Rd+1 and the objective is a linear function f̂(x, t) = 〈(0d, 1), (x, t)〉. Since X̂ is the epi-
graph of the R∪{+∞}-valued function F , we call this transformed problem the epigraphical
form. We will use this transformation to simplify our study of duality theory.

2.3 Basic Consequences of Convexity

We end this lecture with a few basic consequences of convexity (where A is a linear map):

• The set of optimal solutions to a convex program is convex.
• Intersections of convex sets are convex.
• Cartesian products of convex sets are convex.
• If X1 and X2 are convex, then so is X1 + X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.
• If X ⊆ Rd is a convex set, then {Ax : x ∈ X} is convex.
• If Y ⊆ Rm is a convex set, then {x ∈ Rd : Ax ∈ Y} is convex.
• The set {Ax : x ∈ X} is not necessarily closed, even when X is closed.

You should write a proof of the first six facts and provide a counterexample to the seventh
one. Related to the 7th fact is the following positive result, which will reappear in our study
of duality theory. (You will prove this fact in your first recitation.)

Theorem 2.2. Let X be a polyhedron and let A ∈ Rn×d be a matrix. Then the set {Ax ∈
Rd : x ∈ X} is also a polyhedron.

2.4 Exercises

Exercise 2.1. Prove the following basic consequences of convexity:

1. The set of optimal solutions to a convex program is convex.
2. Intersections of convex sets are convex.
3. Cartesian products of convex sets are convex.
4. If X1 and X2 are convex, then so is X1 + X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.

6

https://people.orie.cornell.edu/dsd95/teaching/orie6300/ORIE6300Fall2019Recitations.pdf

5. If X ⊆ Rd is a convex set and A is a matrix, then {Ax : x ∈ X} is convex.
6. If Y ⊆ Rm is a convex set and A is a matrix, then {x ∈ Rd : Ax ∈ Y} is convex.
7. The set {Ax : x ∈ X} is not necessarily closed, even when X is closed.
8. A convex set X ⊆ Rd has a convex closure.
9. Let X be a closed convex set and let x ∈ X . Show that NX (x) is a closed convex cone,

meaning NX (x) is closed and convex and for all v ∈ NX (x) and t ≥ 0, the inclusion
tv ∈ NX (x) holds.

Exercise 2.2. Let X ⊆ Rd. We define the convex hull as the smallest convex set containing
X and denote this set by conv(X). Here, the word “smallest” means that whenever a convex
set Y ⊆ Rd contains X , it must be the case that Y contains conv(X) as well. Prove that

conv(X) =

{
x ∈ Rd : x =

nx∑
i=1

αixi for some nx > 0, xi ∈ X , and αi ∈ [0, 1] with
nx∑
i=1

αi = 1

}
.

Exercise 2.3. Consider the `1 ball:

X :=

{
x ∈ Rd :

d∑
i=1

|xi| ≤ 1

}
.

1. Prove that X is a polyhedron (i.e., the intersection of finitely many linear inequalities,
meaning X = {x ∈ Rd : aTi x ≤ bi for i = 1, . . . , n} for a set of vectors ai and scalars
bi). How many inequalities are needed to describe X (how large is n)?

2. A lifting of a polyhedron P1 ⊆ Rd is a description of the form P1 = {Ax : x ∈ P2}
where P2 ⊆ Rm is a polyhedron and A ∈ Rd×m is a matrix.

Find a lifting of X to R2d, where the associate polyhedron in R2d is defined by at most
2d+ 1 inequalities.

Exercise 2.4. Let f : Rd → R∪{+∞} be a convex function. Prove that any local minimum
of f is a global minimum.

Exercise 2.5 (Weierstrass). Let f : Rd → R∪{+∞} be a function with a closed epigraph
and bounded sublevel sets. Show that f has a minimizer. (Hint: consider the epigraphical
form)

Exercise 2.6 (Avoiding −∞). Let f : Rd → [−∞,∞] be a convex function. Suppose
there is a point x ∈ int(dom(f)) and f(x) ∈ R. Show that f(x′) > −∞ for all x′ ∈ Rd.

3 First-Order Optimality and Normal Cones

Skills. Recognize well-structured nonconvex problems (smoothness); compute first-order
necessary optimality conditions with nonsmooth calculus (normal cones).

In every calculus course, we learn a basic technique for finding minimizers of differentiable
functions f : (a, b)→ R:

7

if f is minimized over (a, b) at a number t, then f ′(t) = 0.

This condition is called Fermat’s rule and encodes the intuition that a function must be
“flat” at minimizers. Generalizing to higher dimensions, consider (MP) where f : R2 → R
is differentiable and X = {x ∈ R2 : g(x) = 0} for a differentiable function g : R2 → R.
For such problems, the Lagrange multiplier rule provides a similarly useful criterion: at
minimizers x̄, the gradient of f must be “normal” to X at x̄, implying ∇f(x̄) = λ∇g(x̄) for
some λ ∈ R. Generalizing these results to higher dimensions is the purpose of this lecture,
focusing specifically on differentiable functions and closed convex constraint sets.

3.1 Differentiability and the Gradient

To generalize Fermat’s rule to constrained optimization problems, we introduce a notion of
smoothness called Fréchet differentiability. This notion makes precise the intuition that a
function is differentiable if, at every point, we can approximate it by a linear function up to
first order.

Definition 3.1. A function f : O → R defined on an open set O ⊆ Rd is differentiable at
x ∈ O if there exists v ∈ Rd and ox : Rd → R with

f(y) = f(x) + 〈v, y − x〉+ ox(y) where lim
y→x

ox(y)

‖y − x‖
= 0. (DIFF)

One immediate consequence of this definition is that any such v is unique. Indeed,
supposing v1 and v2 both satisfy the above definition (with a particular ox and ôx) and
setting y = x+ λ(v1 − v2) for λ > 0, we have{

〈v1, y − x〉 = f(y)− f(x) + ox(y)

〈v2, y − x〉 = f(y)− f(x) + ôx(y)
=⇒ 〈v1 − v2, y − x〉

‖y − x‖
=

ox(y)

‖y − x‖
− ôx(y)

‖y − x‖
.

We then find that v1 = v2 by letting λ ↘ 0 since the little-o terms tend to zero and the
inner product is equal to ‖v1 − v2‖ (check!). Since any such v is unique, we use the familiar
notation ∇f(x) and call it the (Fréchet) gradient of f . To illustrate, fix a z ∈ Rd and define
f(x) = 1

2
‖x− z‖2. Then (check!)

∇f(x) = ∇
[

1

2
‖ · −z‖2

]
(x) = x− z for all x ∈ Rd. (3.1)

This gradient will reemerge in the next lecture.
While we could now give a higher dimensional generalization of Fermat’s rule (do this

exercise!), we instead move to a more challenging and interesting issue: constrained mini-
mization.

3.2 Normal Cones and First-Order Optimality: A First Look

From linear algebra, we know that there is a duality between hyperplanes and normal vectors:
all points of a hyperplane are orthogonal to a subspace of normal vectors and conversely any

8

vector is normal to the hyperplane of vectors orthogonal to it. A similar duality exists for
closed convex sets, based on a fundamental property of such objects: every boundary point
admits at least one supporting hyperplane (not obvious!). We then collect the normals to
these hyperplanes into a single dual object called the normal cone.

Definition 3.2. If X ⊆ Rd is closed and convex, then at any x ∈ X , define the normal cone:

NX (x) = {v ∈ Rd | 〈v, y − x〉 ≤ 0, ∀y ∈ X} ∀x ∈ X .

H1

H2

X

Supporting Hyperplanes

X

NX (x)

x

The Normal Cone

Figure 1: Supporting Hyperplanes and Normal Cones

The normal cone is undefined at points y /∈ X . We adopt the convention for such points
that NX (y) = ∅. To get a basic understanding of normal cones, you should carefully prove
the following identities:

• N{x}(x) = Rd.

• NRd(x) = {0}

• For X = [0, 1], we have

NX (t) =


R− if t = 0

R+ if t = 1

0 if t ∈ (0, 1).

• For X = B1(0), we have

NX (x) =

{
{0} if ‖x‖ < 1

R+x if ‖x‖ = 1.

• If X is a subspace of Rd, we have NX (x) = X⊥.

Finally, we note the following fact, which you should be able to prove:

Exercise 3.1. Let X be a closed convex set and suppose that x ∈ X . Then NX (x) is a closed
convex set.

9

Normal cones feature in the optimality conditions of constrained optimization, a result
of the following general principle: if a point x̄ is an optimal solution to (MP), then −∇f(x̄)
should point outside X . Why? Because the direction of maximum instantaneous decrease is
parallel to the negative gradient. We now formalize this intuition by connecting normality
and optimality.

Theorem 3.3 (First Order Optimality). Suppose x̄ is a local minimizer of f : Rd → R on a
closed convex set X ⊆ Rd. Then if f is differentiable x̄, it holds:

−∇f(x̄) ∈ NX (x̄).

x

x

xλ
−rf (x̄)

X

X \ B"(x̄)

Proof. We want to show that 〈−∇f(x̄), x − x̄〉 ≤ 0 for all x ∈ X . To that end, we fix a
vector x ∈ X and a scalar λ ∈ [0, 1] and define xλ := (1−λ)x+λx̄. In order to use the local
optimality property of x̄, we let ε > 0 be small enough that x̄ minimizes f on X ∩ Bε(x̄).
By the definition of xλ, there must be a λ̄ > 0 such that for all λ ≥ λ̄, we have the inclusion
xλ ∈ X ∩Bε(x̄). Consequently, we have f(x̄) ≤ f(xλ) for all λ ∈ [λ̄, 1].

Fix such a λ ∈ [λ̄, 1]. Then as long as x 6= x̄, it holds

x− x̄
‖x− x̄‖

=
xλ − x̄
‖xλ − x̄‖

(check!).

Therefore,

〈−∇f(x̄), x− x̄〉
‖x− x̄‖

=
〈−∇f(x̄), xλ − x̄〉
‖xλ − x̄‖

=
f(x̄)− f(xλ)

‖x− xλ‖
+

ox̄(xλ)

‖x− xλ‖
≤ ox̄(xλ)

‖x− xλ‖
.

Letting λ → 1, the left-hand side is constant, and the right-hand side tends to zero. This
completes the proof.

With this theorem, we can immediately deduce first-order optimality conditions for lin-
early constrained optimization problems.

Corollary 3.4. Assume the setting of Theorem 3.3 and suppose that X = {x ∈ Rd : Ax = b}
for a matrix A ∈ Rm×d and a vector b ∈ Rm. Then there exists a vector y ∈ Rm so that

∇f(x̄) = ATy.

10

Proof. First, assume b = 0. Then X is a subspace, so NX (x̄) = X⊥ = ker(A)⊥ = range(AT).
You can see the general case in a few different ways:

• Show by direct computation that NX (x) = range(AT).
• In greater generality, show that if X is an affine space (i.e., a shift of a vector space),

then NX (x) = (X − X)⊥.
• In the greatest generality, you can proceed in two steps

– First show that for any closed convex X and y ∈ Rd, we have NX+y(x+y) = NX (x)
for all x ∈ X .

– Second, show that {x ∈ Rd : Ax = b} = ker(A) + y for some y ∈ Rd.

The third technique states that normals are invariant under shifts.

Interpretation: Lagrange Multipliers. The components of the vector y in the above
corollary are Lagrange multipliers. We can see this by considering the problem

minimize f(x)

subject to :


aT1 x = b1

...

aTmx = bm

,

where aTi are the rows of A. Then defining the functions gi(x) = aTi x − b, the Lagrange
multiplier rule states that at any local minimizer x̄, there exists multipliers y1, . . . , yn such
that ∇f(x̄) =

∑m
i=1 yi∇gi(x̄) =

∑m
i=1 yiai = ATy.

3.3 Exercises

Exercise 3.2 (Normals at Interior Points). Suppose that X is a closed convex set and
let x ∈ int(X). Prove that NX (x) = {0}.

Exercise 3.3 (The Rayleigh Quotient; see Exercise 6 of Chapter 2.1 in Borwein and
Lewis.).

1. Let f : Rd\{0} → R∪ {+∞} be continuous, satisfying f(λx) = f(x) for all λ > 0 in R
and nonzero x in Rd. Prove f has a minimizer.

2. Given a symmetric matrix A ∈ Rd×d, define a function g(x) = xTAx/‖x‖2 for nonzero
x ∈ Rd. Prove that g has a minimizer.

3. Calculate ∇g(x) for nonzero x.

4. Deduce that minimizers of g must be eigenvectors and calculate the minimum value.

11

4 Start of Duality: Projections and Hahn-Banach

Skills. Recognize and exploit convexity and its special cases; Compute first-order neces-
sary optimality conditions with nonsmooth calculus.

In linear algebra, we learn that every subspace V of Rd can be paired with another
subspace, denoted by V ⊥ and called the orthogonal complement, and that when the com-
plement operation is applied to the orthogonal space, it returns V ⊥ to V : (V ⊥)⊥ = V . The
orthogonal complement operation is an example of a duality pairing, and similar pairings
are often available for objects that exhibit convexity. The pairing key to our study is the
one between two convex optimization problems: the primal problem (the original problem
of primary interest) and its associated dual. This course will show several duality theorems
that connect these seemingly disparate problems and illuminate the behavior of both. For
example, we will show that the primal and dual optimal values often coincide (strong duality)
and that the size of dual optimal solutions elucidates how wildly the optimal value can vary
as we change problem data (sensitivity). Duality also underlies some of the most powerful
algorithms in convex optimization, namely the class of primal-dual algorithms, which place
primal and dual on an equal footing by solving both problems in tandem.

X

x

projX (x)

Multiple Projections

X

x

projX (x)

H

No Separating Hyperplane
Unique Projection

Separating Hyperplane

Figure 2: Projections and Separating Hyperplanes

The theory underlying duality is based on an elementary geometric consequence of con-
vexity: if a point sits outside a closed convex set, then a hyperplane must separate it from
the set. This observation is a geometric variant of the celebrated Hahn-Banach theorem from
functional analysis, and its illuminating proof is summarized in Figure 2. Briefly (using the
notation of the figure) we construct a hyperplane separating x from X in two steps: we
first find the closest point to x in X and denote it by projX (x); then we choose the sepa-
rating hyperplane to be the one passing through (1/2)x+ (1/2)projX (x) with normal vector
x− projX (x). Rigorously grounding this argument will be the goal of this lecture.

12

4.1 Projections: Existence, Uniqueness, and Characterization

Key to the proof outlined above was the existence of a projection. It turns out existence
is insufficient to imply a separating hyperplane since, as Figure 2 illustrates, projections
can exist when separating hyperplanes do not. In finite-dimensional spaces, like Rd, if a set
has the property that projections always exist and are unique, there is always a separating
hyperplane (nontrivial!). Rather than pursue this challenging theorem, we will focus on
closed convex sets, showing that projections exist, are unique, and are characterized by an
inclusion.

Theorem 4.1 (Projections). Let X ⊆ Rd be a closed convex set and suppose x /∈ X . Then
there is a unique point projX (x) ∈ X that is nearest to x. Moreover, projX (x) is the unique
point y ∈ X that satisfies the inclusion:

x− y ∈ NX (y). (4.1)

Proof. Existence. Define f(y) = 1
2
‖y − x‖2. Note that f : X → R has bounded sublevel

sets since {
y ∈ X | 1

2
‖y − x‖2 ≤ a

}
⊆ B√2a(x) for all a ∈ R.

Thus, by Weierstrass’ theorem (Theorem 2.1), the function f has a minimizer x̄ ∈ X . This
point is the nearest point to x in X . (Notice that we did not use convexity in this part.)

Uniqueness. By first-order optimality conditions (Theorem 3.3), any minimizer x̄ of f
over X must satisfy

x− x̄ = −∇f(x̄) ∈ NX (x̄),

where the gradient identity follows by (3.1). Thus, it suffices to show that solutions to (4.1)
are unique. To that end, suppose y1 ∈ X and y2 ∈ X satisfy (4.1). Then by definition of
NX (x̄)

〈x− y1, y2 − y1〉 ≤ 0 and 〈x− y2, y1 − y2〉 ≤ 0.

Adding these inequalities, we get ‖y2 − y1‖2 ≤ 0, as desired.

4.2 Hahn-Banach: The Separating Hyperplane Theorem

With projections in hand, we can now prove the Hahn-Banach theorem.

Theorem 4.2 (Hahn-Banach). Let X ⊆ Rd be a closed convex set. For any point x /∈ X ,
the point x is strictly separated from X by the hyperplane that passes through (1/2)x +
(1/2)projX (x) and has normal vector a := x− projX (x). More specifically,

max{〈a, y〉 : y ∈ X} < 〈a, x〉. (4.2)

where “max” signifies the attainment of the maximal value.

Proof. Denote x̄ = projX (x) and notice that a ∈ NX (x̄) by (4.1). Thus, for any y ∈ X

〈a, y〉 = 〈x−x̄, y〉 = 〈x− x̄, y − x̄〉︸ ︷︷ ︸
≤0

+〈x−x̄, x̄〉 ≤ 〈x− x̄, x̄〉︸ ︷︷ ︸
=〈a,x̄〉

max attained
at x̄

= 〈x− x̄, x− x̄〉︸ ︷︷ ︸
=‖x−x̄‖2

+〈x−x̄, x〉 < 〈a, x〉.

This completes the proof.

13

A simple consequence of Hahn-Banach is the existence of separating hyperplanes in the
sense of Figure 1. Note that by the duality between hyperplanes and their normals, a dual
statement of this result is that normals exist at every boundary point of X .

Corollary 4.3 (Existence of Supporting Hyperplanes). Let X ⊆ Rd be a closed convex set.
Then for any point x ∈ bdryX , there exists a normal vector v ∈ NX (x) with ‖v‖ 6= 0.

Proof. Since x ∈ bdryX , there exists a sequence x1, x2, . . . of points in the complement of X
with the property that limi→∞ xi = x. Let ai be the normal vectors guaranteed to exist by
Hahn-Banach (Theorem 4.2). Notice that Equation (4.2) is invariant to the scaling of a, so
we can assume that ‖ai‖ = 1 without loss of generality. By compactness of the unit sphere,
we can also assume without loss of generality that the sequence ai converges to a limit point
a, which necessarily has unit norm. Then for all y ∈ X , we have

〈a, x〉 = lim
i→∞
〈ai, xi〉 ≥ lim

i→∞
〈ai, y〉 = 〈a, y〉.

Thus, we have 〈a, y − x〉 ≤ 0 for all y ∈ X , meaning a ∈ NX (x).

A direct consequence of Corollary 4.3 and Hahn-Banach is the following representation
theorem for convex sets: any closed convex set is the intersection of half-spaces.

Corollary 4.4. Every closed convex set is the intersection of (possibly infinitely many) linear
inequalities.

Proof. The set of all normal vectors will supply the linear inequalities to X :

P := {y ∈ Rd : (∀x ∈ X ,∀v ∈ NX (x)) 〈v, y − x〉 ≤ 0}.

We claim that X = P . Clearly X ⊆ P . To prove the opposite inclusion, we show that a
point in the complement of X cannot be in P . Indeed, if z ∈ Rd\X , then Hahn-Banach
supplies the normal a := z − projX (z) ∈ NX (z) and shows that the hyperplane normal to a
separates z from projX (z):

〈a, z〉 > 〈a, projX (z)〉.

Rearranging, we find 〈a, z − projX (z)〉 > 0, implying z /∈ P .

Combined with an exercise from the first lecture, we now have the following theorem:

Theorem 4.5 (Representation of Convex Sets). A set X is closed and convex if, and only
if, it is the intersection of (possibly infinitely many) linear inequalities.

4.3 Exercises

Exercise 4.1. Let X ⊆ Rd be a closed convex set. For any x ∈ X , define the proximal
normal cone

N P
X (x) =

{
v ∈ Rd : x = projX (x+ v)

}
.

Prove that NX (x) = N P
X (x).

14

5 Conic Programs

Skills. Recognize and exploit convexity and its special cases (conic programming);

In the previous lecture, we began our search for duality: a pairing between primal and
dual optimization problems. To help us find this pairing, we must first pick some partic-
ular (MP) and then let it play the role of a primal or dual optimization problem. There
is more than one way to do this, each with advantages and disadvantages. Nevertheless,
we must choose a path, and the one we choose—conic duality—is motivated by geometric
considerations. This path is taken without loss of generality since any convex program has
an equivalent conic reformulation, a formulation we will arrive at towards the end of the
lecture. We start with a more fundamental question: What is a cone?

5.1 Cones

A cone K ⊆ Rd is a set with a simple geometric structure: If a cone contains a vector x,
it must contain all positive scalar multiples of x. Thus, for every x ∈ K and t > 0, we
have tx ∈ K. A particularly uninteresting cone is the empty set. To eliminate this set from
consideration, we always assume cones are nonempty. A more interesting cone is the normal
cone of a closed convex set (you will have proved this on your first homework).

K

0

A Closed Convex Cone A Closed Nonconvex Cone

0

K

A few immediate properties of cones follow:

• The closure of any cone must contain the origin.
• A cone K ⊆ Rd is convex if, and only if, K +K = K.
• Intersections of cones are cones.
• Cartesian products of cones are cones.
• If K1,K2 ⊆ Rd are cones, then K1 +K2 is a cone.

Suppose A ∈ Rm×d is a matrix.

• If K ⊆ Rd is a cone, then {Ax : x ∈ K} is a cone in Rm.
• If K′ ⊆ Rm is a cone, then {x : Ax ∈ K′} is a cone in Rd.

You should write a complete proof of these facts since we will take them for granted from
now on. Having established these basic facts, let us turn our attention to a few examples.

15

5.1.1 Cones of Particular Significance

Historically, three types of cones have had the greatest practical significance:
Nonnegative Orthant. The cone underlying linear programming is known as the nonneg-

ative orthant :

Rd
+ = {x ∈ Rd : xj ≥ 0 for j = 1, . . . , d}.

This cone is closed and convex. Its interior is the strictly positive orthant:

Rd
++ = {x ∈ Rd : xj > 0 for j = 1, . . . , d}.

This cone is not closed, but it is convex.
Second-Order Cone. The cone underlying second order cone programming is called (un-

surprisingly) the the second order cone:

SOC(d+ 1) = {(x, t) ∈ Rd × R : ‖x‖ ≤ t}.

In the literature, you will also find the names Lorentz or “ice cream cone.”

A Second Order Cone

Positive Semi-Definite Cone. The cone underlying semidefinite programming is called the
positive semi-definite (PSD) cone. It is contained in the vector space of symmetric matrices

Sd×d = {X ∈ Rd×d : XT = X}.

Although this is a vector space of matrices, we can identify it with a subspace of Rd2 by
“vectorizing” the matrix X.1 The definition of this cone relies on a key fact from linear
algebra: symmetric matrices only have real eigenvalues. In particular, the minimal eigenvalue
λmin(X) of a symmetric matrix X is real. Based on this fact, we define the PSD cone:

Sd×d+ = {X ∈ Sd×d : λmin(X) ≥ 0}.

1For example,

[
X11 X12

X21 X22

]
→


X11

X21

X12

X22

 .
16

In the spirit of Theorem 4.5, we may alternatively write this cone as the intersection of
infinitely many linear inequalities:

Sd×d+ = {X ∈ Sd×d : vTXv ≥ 0 ∀v ∈ Rd}.

To see the equivalence, recall from your first homework assignment that

λmin(X) = min
v∈Rd\{0}

vTXv

‖v‖2
,

for any symmetric d× d matrix X.

5.2 Conic Optimization Problems

To begin our discussion of conic optimization problems, we must narrow the class of objec-
tives and feasible regions under consideration. As with the epigraphical form (EPI), our
objectives will be linear. Our constraints, on the other hand, will intermix linear and conic
constraints. We consider two forms.

(First Form.) Given a matrix A ∈ Rm×d, a vector b ∈ Rm, and a closed convex cone
K ⊆ Rm, we say that

X = {x ∈ Rd : Ax− b ∈ K}

a conic constraint set. A couple of basic examples follow:

– (Affine) If K = {0}, then X is the set of solutions to Ax = b.

– (Polyhedral) If K = Rd
+, then X = {x ∈ Rd : Ax ≥ b} is a polyhedral set.2

Such conic constraints can be intersected, yielding new conic constraints. Indeed,
suppose that for i = 1, 2, we have conic constraints Xi = {x ∈ Rd : Aix − bi ∈ Ki}.
Then

X1 ∩ X2 =

{
x :

[
A1

A2

]
x−

[
b1

b2

]
∈ K1 ×K2

}
.

Similarly, products and Minkowski sums of conic constraint sets are also conic con-
straint sets (check!). Since it is closed under these basic operations, we say that this
is a universal form for conic constraints.

(Second Form.) To illuminate the geometry of duality theory, we consider a second
form of conic constraints:

X ′ = {x′ : A′x′ = b′ and x′ ∈ K′},

where A′ is a matrix, b′ is a vector, and K′ is a closed convex cone. This cone is
the intersection of an affine set with a conic constraint. It is also universal since any

2When applied to vectors z, y ∈ Rm, the comparison z ≥ y, means zi ≥ yi for i = 1, . . . ,m.

17

constraint of the first form may be reduced to this form. Indeed, assuming X is a conic

constraint of the first form, we may define a new variable x′ =

[
x
y

]
∈ Rd ×Rm and let

A′ =
[
A | −I

]
, b′ = b, and K′ = Rd ×K.

Then, any point in X ′ gives rise to a point in X and vice versa (check!). In that sense,
the first and second forms are equivalent.

In practice, one will encounter problems that fit neither the first nor the second form but
are mixtures of both types of constraints. Since we must ultimately choose some problem to
study, this discussion shows that we make this choice without loss of generality.

5.2.1 The Primal Conic Problem

We arrive at the primal conic problem, which will be the focus of the next few lectures:

minimize cTx

subject to : Ax = b

x ∈ K (PRIMAL)

where c ∈ Rd is a vector, A ∈ Rm×d is a matrix, b ∈ Rm is a vector, and K ⊆ Rd is a closed
convex cone. Let us consider a few examples.

Linear programs. When K = Rd
+, this form is called a linear program in standard equality

form. We will later see that linear programs have a particularly powerful duality theory.
Second Order Cone Programs. When K is the product of second order cones and copies

of R+, this form is called a second order cone program in standard equality form. Of course,
any linear program is also a second-order cone program.3

Semidefinite Programs. When K = Sd+, this form is called a semidefinite program in
standard equality form.

5.3 The Conical Form of a Convex Program

Recall the mathematical program (MP). Building on this problem, we created the epigraph-
ical form (EPI), an equivalent problem that has a linear objective. A consequence of this
form is that any convex program is equivalent to a convex program with a linear objective
function. This section describes how such programs are equivalent to conic programs. This
description relies on the following fact, which you will prove in your homework:

Exercise 5.1. Let X be a closed convex set. Then

KX = {(x, t) : t > 0 and x/t ∈ X}

is a convex cone.

3This follows by considering zero second-order cones and using the identity Rd
+ = R+ × . . .× R+.

18

In general, KX is not closed since it does not contain the origin. Nonclosedness is not
a problem since we will ultimately work with the closure of KX , as we will see momentary.
For now, we use this cone to turn any optimization problem with a linear objective into a
conic optimization problem:

{
minimize cTx

subject to : x ∈ X

}


minimize cTx

subject to : t = 1

(x, t) ∈ KX

 . (CONIC)

You should check that KX can be replaced by KX without changing the optimal solution of
the underlying problem (assuming it exists).

Disclaimer: When one takes the dual of a convex problem, it is usually unnecessary to
convert the problem to conic form before doing so. Instead, there are often simpler techniques
that apply in special cases. We only mention the conic form to illustrate that our restriction
to conic programs is without loss of generality.

5.4 Exercises

Exercise 5.2. Prove the following:

1. The closure of any cone must contain the origin.
2. The intersection of two cones is a cone.
3. The Cartesian product of two cones is a cone.
4. If K1,K2 ⊆ Rd are cones, then K1 +K2 is a cone.
5. A cone K ⊆ Rd is convex if and only if K +K = K.

Suppose A ∈ Rm×d is a matrix.

6. If K ⊆ Rd is a cone, then {Ax : x ∈ K} is a cone in Rm.
7. If K′ ⊆ Rm is a cone, then {x : Ax ∈ K′} is a cone in Rd.
8. Give an example of a closed convex cone K ⊆ Rd and a matrix A ∈ Rm×d such that

the set {Ax : x ∈ K} is not closed.

Exercise 5.3. Suppose X is a closed convex set.

1. If X is bounded, show that KX = KX ∪ {(0, 0)}.

2. Give an example of a closed convex set X for which KX 6= KX ∪ {(0, 0)}.

6 Farkas’ Lemma

Skills. Recognize and exploit convexity and its special cases (conic programming); Learn
to “take a dual;” Recognize when “strong duality” holds.

19

Suppose you and your friend are having a discussion about a polyhedral system:

Ax = b

x ≥ 0 (6.1)

You claim that this system has no solution, but your friend does not believe you. Unfortu-
nately, your friend has never taken an optimization course, and can do little math beyond
arithmetic. How can you convince them of your claim?

In this section we will show how you can provide your friend with a short “certificate of
infeasibility”—a vector y ∈ Rm—that proves the system (6.1) is infeasible.4 This certificate
is simply any solution to the alternative system

ATy ≥ 0

bTy < 0. (6.2)

Indeed, whenever x is a solution to (6.1), we have Ax = b and x ≥ 0. Thus,

0 > bTy = (Ax)Ty = xT (ATy) ≥ 0,

since both arguments of the final dot product are nonnegative vectors. This is clearly a
contradiction, and your friend, who believes in arithmetic, is convinced.

a1

a2

a1

a2
b

b = x1a1 + x2a2
x ≥ 0

The First Alternative

y

b

yTai ≥ 0; i = 1; 2

yT b < 0

The Second Alternative

yTz = 0

Figure 3: The two alternative systems

Figure 3 illustrates the geometry underlying this certificate, namely, y is the normal to
a hyperplane that passes through the origin and separates the cone ARd

+ from the vector b.5

The Hahn-Banach theorem (Theorem 4.2) guarantees a separating hyperplane exists6. This
requires more argument. The goal of this lecture is to rigorously ground this argument and
generalize this procedure to conic systems.

4Infeasible means not feasible, i.e., the system does not have a solution.
5Here, ARd

+ = {Ax : x ≥ 0}.
6Strictly speaking, one must show that ARd

+ is a closed set. This was the subject of your first recitation.

20

6.1 Dual Cones

The system alternative to a conic system involves a related object, called the dual cone.

Definition 6.1 (Dual Cone). Let K ⊆ Rd be a cone. Then the dual cone of K is the set

K∗ := {s ∈ Rd : 〈x, s〉 ≥ 0 ∀x ∈ K}.

The dual cone of any cone is always a cone, and moreover, it is always convex even if K
is not convex (check!). Perhaps easier to visualize is the polar cone

K◦ := −K∗.

If K is closed and convex, then the polar cone to K is just the normal cone: K◦ = NK(0)
(check!).

right angle

The Polar Cone

K◦

K

Dual cones are sometimes easy to calculate as the following two examples show (check!):

• If K is a subspace, then K∗ = K⊥.

• If K = Rd
+ is the nonnegative orthant, then K∗ = Rd

+.

The nonnegative orthant satisfies K∗ = K, so it is called self-dual. Another self-dual cone is
the second order cone SOC(d+ 1), a fact you will prove on your homework.

The product and closure operations can be applied before or after taking a dual. Indeed,
it is easy to show that

(K1 × . . .×Kl)∗ = K∗1 × . . .×K∗l ,
where K1, . . . ,Kl are cones (check!). A simple but useful example of this fact is

(Rd
+ × Rm)∗ = Rd

+ × {0}.

Likewise, the closure satisfies (
K
)∗

= (K∗) = K∗.

You will prove this fact on your homework. For now, we mention it since it plays a role in
the following corollary of Hahn-Banach.

21

6.2 A Corollary to Hahn-Banach and Farkas Lemma

The connection between systems (6.1) and (6.2) is based on a simple corollary of Hahn-
Banach. The corollary roughly states that the duality operation is invertible and in fact,
it is its own inverse. You should view this invertibility as an instance of strong duality, a
phenomenon we will return in the next lecture.

Corollary 6.2. Assume C is a convex cone. Then (C∗)∗ = C.

Equivalently, b /∈ C if and only if there exists y ∈ C∗ satisfying bTy < 0.

Proof. “⊆” We first show that C ⊆ (C∗)∗. Since (C∗)∗ is closed7 and C is the smallest closed
set containing C, we need only show that C ⊆ (C∗)∗. To that end, let x ∈ C. To prove
x ∈ (C∗)∗, we must show that for all y ∈ C∗, we have 〈x, y〉 ≥ 0. This is true by definition.

“⊇” We now show that C ⊇ (C∗)∗. For the sake of contradiction, suppose that there
exists x ∈ (C∗)∗ such that x /∈ C. By Hahn-Banach, there exists a vector a ∈ Rd such that

max{〈y, a〉 : y ∈ C} < 〈x, a〉.

Clearly, the maximum is at least 0 since 0 ∈ C. We now claim that this is indeed the
maximum value, in particular, max{〈y, a〉 : y ∈ C} ≤ 0, implying −a ∈ C∗.

Indeed, let y obtain the maximum and suppose that 〈y, a〉 > 0. Then 2y ∈ C, so
〈2y, a〉 > 〈y, a〉, which contradicts the definition of y. Thus, for all y ∈ C, we have
〈y, a〉 ≤ 0, meaning −a ∈ C∗.

Now, since −a ∈ C∗, we have 〈x,−a〉 ≥ 0, which directly contradicts 〈x, a〉 > 0. Therefore,
C ⊇ (C∗)∗, as desired.

Before explaining how this theorem leads to certificates of infeasibility for conic systems,
we must first decide upon the conic system we would like to analyze. To that end and in
direct analogy with (6.1), we consider the following conic system:

Ax = b

x ∈ K
(6.3)

where A ∈ Rm×d is a matrix, b ∈ Rm is a vector, and K ⊆ Rd is a closed convex cone.
Let us return to Figure 3 and the proof strategy outlined in the introduction. In the

event that (6.3) has no solution, we will provide a certificate—a vector y ∈ Rm—which is
normal to a particular hyperplane, one that passes through the origin and separates b from
the closure of the following cone

C := {Ax : x ∈ K}.

The certificate will simply be the vector y ∈ C∗ from the statement of Corollary 6.2, since b /∈
C if and only if ∃y ∈ C∗ such that bTy < 0. The attentive reader will notice a slight technical
issue: Corollary (6.2) can only guarantee separation of b from C. Hence, we introduce a new

7Recall that all dual cones are closed.

22

concept of feasibility for the conic system, saying that it is asymptotically feasible if b ∈ C,
and moreover, we call the vector y a certificate of asymptotic infeasibility. Intuitively, a conic
system is asymptotically feasible if it becomes feasible with the help of a slight perturbation.
Of course, there is no difference between feasibility and asymptotic feasibility when C is
closed, a happy event that occurs if K is a polyhedral cone.

We are missing just one ingredient: a relationship between C∗ and the alternative sys-
tem (6.2). The next lemma supplies it.

Lemma 6.3. The following relationship holds:

C∗ = {y : ATy ∈ K∗}.

Proof. A point y ∈ Rd is contained in C∗ if and only if (∀x ∈ K) 0 ≤ 〈Ax, y〉 = 〈x,ATy〉,
which holds if and only if ATy ∈ K∗.

With this Lemma, we arrive at Farkas’ Lemma, a central statement in duality theory.8

When K is polyhedral (e.g., K = Rd
+), the concepts of feasibility and asymptotic feasibility

coincide. Thus, Farkas’ Lemma shows that you can always provide your friend with a
certificate of infeasibility for a set of linear inequalities.

Theorem 6.4 (Farkas’ Lemma). Assume K is a convex cone and consider the following
systems of constraints.{

Ax = b

x ∈ K

}
︸ ︷︷ ︸

(I)

and

{
ATy ∈ K∗

bTy < 0

}
︸ ︷︷ ︸

(II)

Then either (I) is asymptotically feasible or (II) is feasible, but not both.

In optimization, we typically avoid strict linear inequalities, such as bTy < 0 from system
(II). You should check that this constraint can be safely replaced by bTy = −1 without
changing the statement of the theorem.

6.3 Exercises

Exercise 6.1. Let K be a polyhedral cone.9 Prove that K∗ is also polyhedral.

Exercise 6.2 (Normal Cone to A Cone). Let K ⊆ Rm be a convex cone. Prove that

NK(x) = −K∗ ∩ {x}⊥ ∀x ∈ K.

Exercise 6.3. Prove that each of the following cones K are self-dual, meaning K = K∗.

1. Rd
+

2. SOC(d+ 1)
3. Sd×d+

8Farkas’ result originally appeared in a 1902 paper on polyhedral systems.
9The term polyhedral means the cone is defined by finitely many linear inequalities.

23

7 Strong Duality

Skills. Recognize and exploit convexity and its special cases (linear and conic program-
ming); Learn to “take a dual;” Recognize when “strong duality” holds.

Farkas’ Lemma (Theorem 6.4), though ostensibly about conic systems, has a related
conic programming formulation (why?).

Theorem 7.1 (Farkas’ Lemma, Optimization Form). Assume K is a convex cone and that
{Ax : x ∈ K} is closed. Consider the following conic programming problems:

minimize 0Tx

subject to : Ax = b

x ∈ K

︸ ︷︷ ︸
(I)

and


minimize bTy

subject to : ATy ∈ K∗

︸ ︷︷ ︸
(II)

Then either

• both problems have optimal value 0 or
• (I) is infeasible and inf{bTy : ATy ∈ K∗} = −∞,

but not both.

Naming (I) the primal problem and (II) the dual problem, this pairing has all the features
of the duality pairing that we described at the start of Section 4: the two problems have the
same optimal value when (I) is feasible, and when (I) is infeasible, (II) takes on an infinite
value. The problems are more pleasingly symmetric when we assign (I) the value +∞, in
case of infeasibility, and replace (II) with the equivalent maximization problem{

maximize bTy

subject to : − ATy ∈ K∗

}
︸ ︷︷ ︸

(II′)

,

which then also takes on value +∞ whenever (I) is infeasible. We moreover see that whenever
x is feasible for (I), and y is feasible for (II’), we must have

bTy = (Ax)Ty = xT (ATy) ≤ 0 = 0Tx,

where the inequality follows since −ATy ∈ K∗. Thus the dual objective is pushing the primal
objective from below, and when (I) is infeasible, the dual objective feels no resistance, so it
grows unboundedly.

This primal problem above has cost vector c = 0, but the same idea—a dual objective
pushing a primal objective from below—also suggests a way of thinking about the general
primal problem (PRIMAL):

minimize cTx

subject to : Ax = b

x ∈ K (P)

24

Let us create such a dual. In the interest of minimally adjusting (II’), we commit to the
objective bTy, but require that when x is feasible for (P) and y is feasible for our yet-to-be-
defined dual, the dual objective sits below the primal, namely bTy ≤ cTx. Simplifying, we
find

(Ax)Ty = xT (ATy) = bTy ≤ cTx,

i.e., (c − ATy)Tx ≥ 0 for all x ∈ K, meaning c − ATy ∈ K∗. Thus, we have arrived at the
dual problem

maximize bTx

subject to : c− ATy ∈ K∗. (D)

Comparing (D) with (II’), two crucial differences become apparent: the dual (D) is not
necessarily feasible and even if it is, it does not necessarily attain its minimal value. If it is
infeasible, we give (D) value −∞. If it does not attain its minimal value, we should replace
“maximize” with “sup,” an issue we will return to later.

Let us summarize. The primal problem (P) has optimal value val ∈ [−∞,+∞]. We
let val = +∞ if (P) is infeasible. If val = −∞, then primal problem is unbounded,
meaning there is a sequence of feasible xi with cTxi → −∞ as i → ∞. If val ∈ R, the
primal problem is not unbounded, but the feasible set {x : Ax = b, x ∈ K} can still be
unbounded—this is a slight peculiarity in terminology. We describe the dual problem (D)
with a similar nomenclature: The dual problem (D) has optimal value val∗ ∈ [−∞,+∞].
We let val∗ = −∞ if (D) is infeasible. If val∗ = +∞, then dual problem is unbounded,
meaning there is a sequence of feasible yi with bTyi → +∞ as i→∞. If val∗ ∈ R, the dual
problem is not unbounded, but the feasible set {y : c − ATy ∈ K∗} can still be unbounded,
again a slight peculiarity in terminology.

Based on our derivation of the dual problem, we always have val ≥ val∗ whenever the
primal and dual problems are feasible. If either problem is infeasible, this inequality still
holds (trivially). Thus we have the following weak duality theorem

Theorem 7.2 (Weak Duality). We have

val ≥ val∗.

7.1 Linear Programs

Even for linear programs, it is possible that both the primal and dual are infeasible (val =
+∞, val∗ = −∞) (check!). However, if either (P) or (D) is feasible, then val = val∗, a fact
known as strong duality. Strong duality is not generally true, even when K = SOC(3). As in
Farkas’ Lemma, the success or failure of strong duality hinges on whether or not the linear
image of a certain cone is closed. Similar to Farkas’ Lemma, we will give an asymptotic
refinement of strong duality based on perturbations. Since linear images of polyhedral sets
are polyhedral and closed, linear programs avoid this obstacle. Thus, we begin with linear
programs, and prove the complete strong duality theorem.

Before proving the theorem, let us first resolve one mystery: whether optimal solutions
to linear programs exist whenever val or val∗ is finite.

25

Lemma 7.3 (Optimal Solutions of Linear Programs). Suppose K is polyhedral. If val is
finite, then (P) has an optimal solution. Likewise, if val∗ is finite, then (D) has an optimal
solution.

Proof. We only prove the first statement; the proof of the second is similar. Note that the
set {cTx : Ax = b, x ∈ K} is polyhedral, i.e., a closed interval with left endpoint val. Thus,
we may choose a primal feasible point x̄ with cT x̄ = val.

The proof of the following strong duality theorem is based on Farkas’ Lemma. This is a
standard approach for proving strong duality.

Theorem 7.4 (Strong Duality for Linear Programs). Suppose that K is polyhedral. If ei-
ther (P) or (D) is feasible, then val = val∗.

Proof. First, assume that (P) is feasible. By weak duality, we know that val ≥ val∗, so
we can assume without loss of generality that val > −∞. For the sake of contradiction, we
suppose that val > val∗. In particular there is a real number γ such that val > γ > val∗,
and with such a γ, the system

cTx ≤ γ

Ax = b

x ∈ K
is infeasible (check!). In the interest of applying Farkas’ Lemma, we reformulate this system
in standard equality form by adding an additional variable:

cTx+ s = γ

Ax = b

(x, s) ∈ K × R+

(7.1)

This second system is also infeasible (check!), and it is, in fact, asymptotically infeasible
since the cone K × R+ is polyhedral. Thus Farkas’ Lemma implies there exists a pair
(ȳ, t̄) ∈ Rm × R+, that solves the following alternative system:

ATy + tc ∈ K∗

0Ty + t ∈ R+

bTy + γt < 0, (7.2)

where we have used (K×R+)∗ = K∗ ×R+. We claim that t̄ > 0: if not, t̄ = 0, so AT ȳ ∈ K∗
and bT ȳ < 0, and so by Farkas’ Lemma, there can be no x such that Ax = b and x ≥ 0—a
contradiction, since (P) is feasible. Therefore, t̄ > 0.

Now letting ỹ = ȳ/t̄, we get AT ỹ + c ∈ K∗ and bT ỹ < −γ. Hence, the vector ŷ = −ỹ
satisfies the system

c− ATy ∈ K∗

bTy > γ
,

In other words, the vector ŷ is feasible for the dual problem, and bT ŷ > γ > val∗. This is a
contradiction since the definition of val∗ implies val∗ ≥ bT ŷ. Therefore, val = val∗.

26

On the other hand, suppose that (D) is feasible. Observe that val∗ = −val′, where val′

is the optimal value to the following linear program:

minimize − bTy + 0T s

subject to : ATy + s = c

(y, s) ∈ Rm ×K∗.

This is a standard equality form LP (since K × Rm is polyhedral). Therefore, the first part
of the theorem applies, meaning val′ = (val′)∗, where (val′)∗ is the optimal value of the
dual problem:

maximize cTx

subject to : − b− Ax ∈ {0}
0− Idx ∈ K.

Clearly this problem is equivalent to (P) and val = −(val′)∗ = −val′ = val∗, which
completes the proof.

The following Corollary now immediately follows.

Corollary 7.5 (Strong Duality for LPs). Suppose that K is polyhedral. Then the following
hold:

1. If (P) and (D) are feasible, then both have optimal solutions x̄ and ȳ, respectively, and

cT x̄ = val = val∗ = bT ȳ.

2. If (P) is unbounded, then (D) is infeasible.
3. If (D) is unbounded, then (P) is infeasible.
4. It is possible that (P) and (P) are both infeasible.

7.2 Asymptotic Strong Duality

Looking back on the proof of Theorem 7.4, we used the polyhedrality of system (7.1) to
ensure the notions of feasibility and asymptotic feasibility coincide. In this section, we look
at asymptotic feasibility of the conic system

cTx+ s = γ

Ax = b

(x, s) ∈ K × R+.

(7.3)

for general closed convex cones K. Recall that this system is asymptotically feasible if the
closure of the cone

C = {(Ax, cTx+ s) : (x, s) ∈ K × R+}
contains (b, γ). This set is, in turn, closely related to the value function val : Rm → [−∞,∞],
defined by

val(b′) = inf{cTx : Ax = b′, x ∈ K},

where we let val(b′) = +∞ if the set {x : Ax = b′, x ∈ K} is empty. The following Lemma
relates C to the epigraph of val.

27

Lemma 7.6. We have
C ⊆ epi(val) ⊆ C.

Consequently, C = epi(val).

Proof. “C ⊆ epi(val)” Suppose (Ax, cTx+ s) ∈ C. Then clearly val(Ax) = inf{cTx′ : Ax′ =
Ax, x ∈ K} ≤ cTx ≤ cTx+ s, meaning (Ax, cTx+ s) ∈ epi(val). Therefore, C ⊆ epi(val).

“epi(val) ⊆ C” Suppose that (b′, γ′) ∈ epi(val), i.e., val(b′) ≤ γ. Suppose that γ′ >
val(b′), then by definition, there exists x such that Ax = b′ and val(b′) ≤ cTx ≤ γ.
Consequently, (b′, γ′) = (Ax, cTx + (γ′ − cTx)) ∈ C ⊆ C. On the other had, if val(b′) = γ′,
then there exists a sequence of points xi ∈ K so that Axi = b′ and cTxi → val(b′) as
i → ∞. Then clearly (Axi, c

Txi) ∈ C and (Axi, c
Txi) → (b′, γ′), meaning (b′, γ′) ∈ C. Thus,

epi(val) ⊆ C.

We can think of the set C as a more “robust” version of C since we cannot escape it simply
by walking towards its boundary. The value function also has a more “robust” and closely
related function, called the closure of val, a concept we define in the following exercise.

Exercise 7.1. Let f : Rd → [−∞,+∞] be an extended valued function. Then there exists a
unique function cl f : Rd → [−∞,∞] satisfying epi(cl f) = epi(f). Moreover, it satisfies the
following limiting formula:

cl f(x) = lim
ε→0

inf
y∈Bε(x)

f(y) (7.4)

f cl f

Figure 4: The Closure of a Function

Let us illustrate some basic properties of the closure. For example, any function domi-
nates its closure: cl f(x) ≤ f(x) for all x ∈ Rd. Since any function is uniquely determined
by its epigraph (check!), the double closure of a function is simply the closure: cl cl f = cl f .
Applying the exercise, we find that

cl f(x) = lim
ε→0

inf
y∈Bε(x)

cl f(y).

This property implies that the value cl f(y) cannot suddenly shoot up as y approaches x—yet
another kind of robustness.

If f satisfies cl f = f , then we say f is closed. Any continuous function is closed (check!).
A consequence of the exercise is that any closed function is lower-semicontinuous, meaning

f(x) = lim
ε→0

inf
y∈Bε(x)

f(y).

28

Likewise, any lower-semicontinuous function is also closed (check!). A strange but important
closed function is the indicator function δX : Rd → R associated to a set X ⊆ Rd. This
function takes value 0 on X and +∞ off of it. You can now easily show that X is closed if
and only if δX is closed.

Returning to our study of duality, we introduce the asymptotic value function: a-val :=
cl val. From Lemma (7.6), we see that (b, γ) is asymptotically feasible for system (7.3) if and
only if (b, γ) ∈ epi(a-val), i.e., a-val(b) ≤ γ. From the exercise, we also have the expression

a-val(b) = lim
ε→0

inf
b′∈Bε(b)

val(b′),

which we will return to at the end of the lecture. In the following proposition, we will see
that it is not the value val(b), but the asymptotic value a-val(b) that is equal to val∗.

Theorem 7.7 (Asymptotic Strong Duality). If (P) is asymptotically feasible (meaning the
primal constraints are asymptotically feasible), then

a-val(b) = val∗.

Proof. We do not know, whether a-val(b) ≥ val∗. Thus, we first assume that there is a γ
such that a-val(b) < γ < val∗ and derive a contradiction:

Since a-val(b) ≤ γ, the pair (b, γ) is asymptotically feasible for (7.3). Hence, the
alternative system

ATy + tc ∈ K∗

0Ty + t ∈ R+

bTy + γt < 0, (7.5)

is infeasible. Since val∗ > γ > −∞, the dual (D) is feasible. Thus, there exists a
vector ŷ satisfying c − AT ŷ ∈ K∗ and val∗ ≥ bT ŷ > γ. Clearly (−ŷ, 1) is feasible
for (7.5), which is a contradiction.

Thus, a-val(b) ≥ val∗. For the sake of contradiction, let us suppose a real γ with
val∗ < γ < a-val(b) exists. Since a-val(b) > γ, we have (b, γ) /∈ epi(a-val), so the
system (7.3) is asymptotically infeasible. Hence (7.5) is feasible by Farkas’ Lemma. Let
(y, t) satisfy (7.5). We claim that t > 0:

If not then, then t = 0 and the system {y : ATy ∈ K∗, bTy < 0} is feasible. Thus, by
Farkas’ Lemma, the primal problem (P) is not asymptotically feasible, contradicting
the proposition’s assumptions.

Therefore, t > 0. Now letting ỹ = ȳ/t̄, we get AT ỹ + c ∈ K∗ and bT ỹ < −γ. Hence, the
vector ŷ = −ỹ satisfies the system

c− ATy ∈ K∗

bTy > γ
,

29

In other words, the vector ỹ is feasible for the dual problem, and bT ỹ > γ > val∗. This is a
contradiction since the definition of val∗ implies val∗ ≥ bT ỹ. Therefore, a-val = val∗.

The dual problem also has an asymptotic strong duality theory based on the dual value
function val∗ : Rd → [−∞,∞]:

val∗(c′) = sup{bTy : c′ − ATy ∈ K∗}.

Just as in the second half of Theorem 7.4’s proof, we must look at the value of a related
optimization problem in standard equation form:

val′(c′) = inf{−bTy + 0T s : ATy + s = c, (y, s) ∈ Rm ×K∗}.

For this function, we likewise form an asymptotic value function: a-val′ := cl val′. Again,
from the exercise, we have the expression:

a-val′(c) = lim
ε→0

inf
c′∈Bε(c)

val′(c′).

Applying Proposition 7.7, we thus find that a-val′(c) = (val′)∗ = −val(c) (check!).
By letting a-val∗ = −a-val′ and noting that

a-val∗(c) = lim
ε→0

sup
c′∈Bε(c)

val∗(c′),

we obtain the more meaningful result:

Corollary 7.8 (Dual Asymptotic Strong Duality). If (D) is asymptotically feasible, then

a-val∗(c) = val.

By Proposition 7.7, strong duality (val(b) = val∗) holds whenever a-val(b) = val(b) <
∞. Thus, for feasible problems, the only obstacle to duality is the discrepancy a-val(b) 6=
val(b). In the literature, you will find a variety of conditions that ensure strong duality holds,
but ultimately they exist only to ensure a-val(b) = val(b). For example, in polyhedral
problems the equality a-val ≡ val always holds since

epi(val) ⊆ epi(a-val) = epi(val) = C = C ⊆ epi(val) =⇒ epi(a-val) = epi(val)

and functions are determined by their epigraphs. Another sufficient condition is that val is
continuous at b. This a simple consequence of formula (7.6), and you will explore it in your
homework. More stringent conditions also imply primal and dual optimal solutions exist,
but to show this, we need the tools in the following section.

30

7.3 Exercises

Exercise 7.2 (A Compressive Sensing Problem). Consider the following optimization
problem

minimize ‖x‖1

subject to : Ax = b.

(The symbol ‖x‖1 denotes the `1 norm on Rd, a particular member of the the family of `p
norms defined as follows: for any p ∈ [1,∞), we define

‖x‖pp :=
d∑
i=1

|xi|p ∀x ∈ Rd.

If p =∞, we define ‖x‖∞ := maxi=1,...,d |xi| for all x ∈ Rd.)

1. Write an equivalent linear programming formulation of this problem.
2. Take the dual of the linear program from part 1.
3. Prove that the linear program from part 2 is equivalent to the following problem

maximize 〈y, b〉
subject to : ‖ATy‖∞ ≤ 1.

Exercise 7.3 (Failure Cases.).

1. Give an example of a linear program where val = +∞ and val∗ = −∞.
2. Give an example of a conic program where val is finite but not attained.
3. Give an example of a conic program where val = +∞, but val∗ is finite.
4. Give an example of a conic program where val, val∗ ∈ R and val 6= val∗.

Exercise 7.4 (Closed Functions). Let f : Rd → [−∞,+∞] be an extended valued func-
tion.

1. Prove there exists a unique function cl f : Rd → [−∞,+∞], called the closure of f ,
satisfying

epi(cl f) = epi(f).

Moreover, prove the closure satisfies the following limiting formula:

cl f(x) = lim
ε→0

inf
y∈Bε(x)

f(y). (7.6)

2. Suppose f is convex. Prove that cl f is convex.

Def. An extended-valued function is closed if epi(f) is closed.

3. Prove that cl f is closed.
4. Prove that cl f(x) ≤ f(x) for all x ∈ Rd.
5. Suppose f is continuous. Prove that f closed.

31

6. Suppose that f is continuous at a point x ∈ Rd. Prove that f(x) = cl f(x). (In other
words,

f(x) = lim
ε→0

inf
y∈Bε(x)

f(y).)

7. Suppose that for all x ∈ Rd, we have

f(x) = lim
ε→0

inf
y∈Bε(x)

f(y).

Prove that f is closed. (Such functions are called lower semicontinuous.)
8. Prove that the sum of closed functions is closed.
9. Give an example of a closed extended valued function such that dom(f) = {x : f(x) <

+∞} is open.

Exercise 7.5. Let X ⊆ Rd be a set. Define the indicator function of X as follows:

δX (x) :=

{
0 if x ∈ X
+∞ otherwise.

(7.7)

Prove that δX is closed if and only if X is closed.

Exercise 7.6 (Asymptotic Feasibility).

1. Suppose a-val(b) < +∞. Show that (P) is asymptotically feasible.
2. Give an asymptotically feasible conic program (P) with a-val(b) = +∞.

Exercise 7.7 (Strong Duality.). Let A ∈ Rm×d, let c ∈ Rd, and let K ⊆ Rd be a closed
convex cone. Consider the family of primal and dual conic problems, which both depend on
a parameter b ∈ Rm:

minimize cTx

subject to : Ax = b

x ∈ K

︸ ︷︷ ︸
P(b)


maximize bTy

subject to : c− ATy ∈ K∗

︸ ︷︷ ︸
D(b)

(7.8)

Recall the value function val : Rm → [−∞,∞]

val(b) = inf{cTx : Ax = b, x ∈ K} ∀b ∈ Rm,

and the asymptotic value function a-val : Rm → [−∞,∞]

a-val = cl val.

1. Suppose there is a point b ∈ Rm such that val(b) = a-val(b) ∈ R. Prove that
val(b′) > −∞ for all b′ ∈ Rm.

2. Give an example of a conic program and a vector b such that the val(b) = +∞ and
a-val(b) < +∞.

32

3. Suppose that val is continuous at a point b ∈ Rm. Prove that strong duality holds:

val(b) = sup{bTy : c− ATy ∈ K∗}.

4. Prove that val and a-val are convex.

Consider the following basic property of convex functions:

Theorem 7.9 (Borwein and Lewis Theorem 4.1.3). Let f : Rd → (−∞,+∞] be a convex
function. Then f is continuous on the interior of its domain.10

Notice that the function f in the above theorem never takes value −∞. In the following
two exercises, we use the concept of strong feasibility.

Definition 7.10 (Strong Feasibility). We say that P(b) is strongly feasible if there exists
an ε > 0 such that for all b′ ∈ Bε(b) the perturbed problem P(b′) is feasible.

5. Suppose that P(b) is strongly feasible. Then, show that strong duality holds:

val(b) = sup{bTy : c− ATy ∈ K∗}.

6. (Slater’s Condition.) If P(b) has a feasible point x lying in the interior of K and if
rank(A) = m, prove that strong duality holds:

val(b) = sup{bTy : c− ATy ∈ K∗}.

(Note that it is common to assume rank(A) = m in the optimization literature, and
we can assume this without loss of generality. Indeed, if A is not full rank, we can
row-reduce the system and form a new problem with the row-reduced matrix. Any
solution to the new problem still solves the original one.)

8 Sensitivity: The Basics

Skills. Recognize and exploit convexity and its special cases (linear and conic program-
ming); Learn to “take a dual;” Recognize when “strong duality” holds. Compute first-order
necessary optimality conditions with nonsmooth calculus (subdifferentials, normal cones);
Compute sensitivity of optimization problems with respect to perturbations of input data
(value functions).

Consider the following story (it is less contrived than you may think):

Although measles was thought to be mostly eradicated, cases have recently spiked in
several areas of the world. In New York State, cases have been reported in Kings
County (home to New York City), among other areas. In order to prevent a larger
outbreak, pharmaceutical companies have ramped up production of the MMR vaccine
throughout the state. These companies produce the vaccine at three facilities (A,
B, and C) and then ship them to both Kings County and Tompkins County (home to

33

T

K

A

B

C

3

5

4

2

1

Supply Demand

4

6

8

8

9

7

Costs

Figure 5: A Transportation Problem (cost and supply measured in 1000s))

Cornell). They have thus far manufactured 2000, 3000, and 5000 vaccines at facilities A,
B, and C, respectively. Kings County will take as much of the vaccine as the companies
can provide, while Tompkins County is only in need of 4000 vaccines. Figure 5 depicts
the supply channels and the cost of transporting the vaccine from a given facility to
either of the counties. As is standard procedure in any crisis, the governor has asked
the students of ORIE 6300 to determine how much vaccine Tompkins County should
purchase from each of the facilities in order to minimize the total cost of transportation.

A quick thought reveals that one may formulate this task as a linear program in the six
variables: xAT, xAK, xBT, xBK, xCT, xCK, where for example xAT represents how much
vaccine is transported from facility A to Tompkins County,

minimize 4xAT + 7xAK + 6xBT + 8xBK + 8xCT + 9xCK

subject to : xAT + xAK = 2

xBT + xBK = 3

xCT + xCK = 5

xAT + xBT + xCT = 4

xAT , xAK , xBT , xBK , xCT , xCK ≥ 0

(8.1)

One solution of this linear program has total cost $73000: x∗AT = 2, x∗AK = 0, x∗BT =
2, x∗BK = 1, x∗CT = 0, x∗CK = 5.

At your next meeting, you present your plan to the governor, who looks at the $73000
cost and notices that this is $2000 less than the total budget. Afraid of the political
consequences of coming in under budget, the governor refuses to spend less than $75000
and requests facility A to increase its supply until an optimal budget of $75000 is

10Recall that dom(f) = {x : f(x) < +∞}.

34

reached. In terms of Problem (8.1), this amounts to finding an appropriate ε > 0 so
that the adjusted problem

minimize 4xAT + 7xAK + 6xBT + 8xBK + 8xCT + 9xCK

subject to : xAT + xAK = 2 + ε

xBT + xBK = 3

xCT + xCK = 5

xAT + xBT + xCT = 4

xAT , xAK , xBT , xBK , xCT , xCK ≥ 0

has optimal cost $75000. Apart from brute force search, how might we find ε > 0?

Using the language of the previous section, the governor’s demand is clear: find the value
function. While there is in general no closed form expression for the value function, what
is available is an understanding of how it changes under infinitesimal perturbations. To
illustrate, consider the primal conic program (P) for a fixed b ∈ Rm, and as before let

val(b′) = inf{cTx : Ax = b′, x ∈ K}, ∀b′ ∈ Rm.

Suppose the optimal value of (P) is attained at x0 ∈ K, meaning Ax0 = b and

cTx0 − val(Ax0) = 0.

Taking into account the definition of val, a more general inequality also holds:

cTx− val(Ax) ≥ 0, ∀x ∈ K.

Taken together, these imply the point x0 is optimal for the following program:

minimize cTx− val(Ax)

subject to : x ∈ K.

First order optimality conditions (Theorem 3.3) and the chain rule11 then imply that

− (c− AT∇val(Ax0)) ∈ NK(x0). (8.2)

Based on the elementary identity NK(x0) = −K∗∩{x0}⊥ (Exercise 6.2), we gain two insights:

(Dual Feasibility) The gradient y0 = ∇val(Ax0) is dual feasible: c− ATy0 ∈ K∗.

(Dual Optimality) Multiplying both sides of (8.2) by xT0 and noting xT0NK(x0) = {0}

0 = xT0 (c− AT∇val(Ax0)) = cTx0 − bTy0 =⇒ val(b) = bTy0.

Thus by weak duality (Theorem 7.2), y0 is dual optimal.

This argument is elegant and illuminating, but ultimately wrong since val is not differ-
entiable. It does, however, hint at the truth, namely that “differential” properties of val
are inherited from dual solutions. We will salvage this argument by relaxing the notion of
Fréchet differentiability to (possibly) infinite-valued functions.

11It is an easy exercise to check that if a function f is differentiable at x, then g(x) = f(Ax) is differentiable
at x and ∇g(Ax) = AT∇f(Ax).

35

8.1 The Fréchet Subdifferential

Looking back at the definition of the Fréchet gradient (Definition 3.1), we see that any such
gradient provides a linear approximation of f up to first order. The Fréchet subgradient
provides instead a linear under approximation up to first order.

Definition 8.1. Let f : Rd → (−∞,∞] and let x ∈ dom(f). Then v is a Fréchet subgradient
of f at x ∈ Rd if there exists ox : Rd → R with

f(y) ≥ f(x) + 〈v, y − x〉+ ox(y) where lim
y→x

ox(y)

‖y − x‖
= 0.

We let ∂Ff(x) denote the set of Fréchet subgradients of f.

f(x2) + hv2; y � x 2i

f(x1) + hv1; y � x 1i f(x2) + hv3; y � x 2iepi(f)

Figure 6: Linear under approximations of f . (v1 ∈ ∂f(x1), v2, v3 ∈ ∂f(x2).)

Although we may compute the Fréchet subdifferential without convexity, with it the
definition simplifies. Both Figure 7 and the following Lemma illustrate this fact.

Lemma 8.2 (Fréchet Subgradients of Convex Functions). Let f : Rd → (−∞,∞] be a convex
function. Then

∂Ff(x) =
{
v : f(y) ≥ f(x) + 〈v, y − x〉, ∀y ∈ Rd

}
, ∀x ∈ dom(f).

Equivalently, v ∈ ∂Ff(x) if and only if f(y)− 〈v, y〉 is minimized at x.

A few facts and some notation follow. One need only check the under approximation
property at y ∈ dom(f). If f takes the value −∞, the subdifferential is an uninteresting
object, so we simply define ∂Ff(x) ≡ ∅. The subdifferential can be empty in other cases; in
the next section we will explain when it is not. For convex functions, it is common to simply
define

∂f(x) :=
{
v : f(y) ≥ f(x) + 〈v, y − x〉, ∀y ∈ Rd

}
to be the convex subdifferential of f at x. We began with the Fréchet subdifferential since
we will later consider nonconvex functions. We do, however, use the notation

∂ = ∂F

whenever we deal with convex functions.

36

8.2 Subgradients and Dual Solutions

Returning to our study of the value function, we see that subgradients give us global lower
approximations of val. In classical terminology, they help us measure the sensitivity of (P).
The following theorem relates dual solutions to subgradients of val, salvaging the argument
of the introduction. A similar dual formulation of the theorem is also available by following
the argument of Corollary 7.8. Both results relies both on Lemma 8.2 and on Part 4 of
Exercise 7.7, where val and a-val were shown to be convex.

Theorem 8.3 (Sensitivity Analysis). Consider the primal problem (P) with fixed vector
b ∈ Rm and define D := {y ∈ Rm : y optimal for (D)}. Then the following hold:

1. If (D) is feasible, then ∂val(b) ⊆ D.

2. If (P) is asymptotically feasible, then D ⊆ ∂a-val(b).

Moreover, if (D) is feasible and either (a) ∂val(b) 6= ∅ or (b) (P) is feasible and val(b) =
a-val(b), then

∂val(b) = D = ∂a-val(b).

Proof. Throughout the proof, we use dual feasibility to ensure val(b′) > −∞ for all b′.12

Beginning with Part 1, we may assume that (P) is feasible and ∂val(b) 6= ∅, since in
either case ∂val(b) = ∅ and there is nothing to prove. Thus, by definition there exists
y ∈ ∂val(b) satisfying:

〈y, b′ − b〉+ val(b) ≤ val(b′) ∀b′ ∈ Rm.

Since (P) is feasible, there is thus a feasible sequence x1, x2, . . . that has cost decreasing to
val(b): cTxi ↘ val(b) as i → +∞. By definition, this sequence satisfies both Axi = b and
xi ∈ K, and the former yields val(Axi) = val(b) for all i. We may learn about y by testing
various b′ in the inequality, and a wealth of candidates arise from setting b′ = Ax for x ∈ K.
Choosing any such candidate and substituting in b = Axi, we find that

0 ≤ val(Ax)− val(Axi)− 〈y, A(x− xi)〉
≤ cTx− cTxi − 〈ATy, x− xi〉+ (cTxi − val(Axi))

= 〈c− ATy, x− xi〉+ (cTxi − val(Axi)),

where the first inequality comes from the trivial bound val(Ax) ≤ cTx. We test against two
types of x ∈ K, finding first that y is dual feasible and second that bTy = val(b):

(Dual Feasibility) For any x′ ∈ K, we set x = x′ + xi and find that

〈c− ATy, x′〉 ≥ (val(Axi)− cTxi), ∀i ∈ N.

The left hand side is constant, while the right hand side tends to zero, and thus
〈c− ATy, x′〉 ≥ 0. Since x′ ∈ K is arbitrary, it holds c− ATy ∈ K∗.

12This is a simple consequence of Weak Duality.

37

(Dual Optimality) Setting x = 0,

(cTxi − val(Axi)) ≥ 〈c− ATy, xi〉 = (cTxi − bTy).

Both sides are nonnegative, the left hand side tends to zero, and the right hand side
tends to val(b)− bTy. Thus, bTy = val(b).

Since y is dual feasible and bTy = val(b), weak duality yields y ∈ D.
Turning to Part 2, we assume D is nonempty since otherwise there is nothing to prove.

We will show any dual solution y ∈ D is a subgradient of a-val:

〈y, b′ − b〉+ a-val(b) ≤ a-val(b′) ∀b′ ∈ Rm.

Of course, we must show the inequality only when a-val(b′) < +∞. In turn, Exercise 7.6
shows that for such points, the perturbed system {x : Ax = b′, x ∈ K} is asymptotically
feasible. Thus, asymptotic strong duality yields a-val(b′) = sup{(b′)Ty : c − ATy ∈ K∗}
(Theorem (7.7)). Similarly, asymptotic strong duality also yields a-val(b) = bTy. Putting
these facts together, we see

a-val(b) = bTy = (b′)Ty + (b− b′)Ty ≤ sup{(b′)Ty : c− ATy ∈ K∗}+ (b− b′)Ty
= a-val(b′) + (b− b′)Ty,

as desired.
The final statement follows from Exercise 8.3. Thus, the proof is complete.

When K is polyhedral, equality val ≡ a-val holds, so we obtain the following corollary:

Corollary 8.4 (Sensitivity Analysis of Linear Programs). Consider the primal problem (P)
with polyhedral cone K and fixed vector b ∈ Rm. If (D) is feasible, then

∂val(b) = {y ∈ Rm : y optimal for (D)}.

Proof. If (P) is feasible, the result follows by the theorem. If (P) is infeasible, it holds
val(b) = +∞ and ∂val(b) = ∅. Moreover, (D) is unbounded, so it has no optimal solutions.

Natural questions abound, such as when do subgradients exist and how do we compute
them? These are the topics of the next section.

8.3 Exercises

Exercise 8.1. How can you convince the governor that the following solution is optimal:
x∗AT = 2, x∗AK = 0, x∗BT = 2, x∗BK = 1, x∗CT = 0, x∗CK = 5. (Hint: use Weak Duality.)

Exercise 8.2. Prove Lemma 8.2.

Exercise 8.3. Let f : Rd → (−∞,∞] be a convex function. Prove the following results:

38

1. If ∂f(x) 6= ∅, then f(x) = cl f(x).
2. If f(x) = cl f(x), then ∂cl f(x) ⊆ ∂f(x).

As a consequence, note that in the setting of Theorem 8.3, we have

∂val(b) = {y ∈ Rm : y optimal for (D)}

whenever either ∂val(b) 6= ∅ or (P) is feasible and val(b) = a-val(b).

Exercise 8.4. We call a function f : Rd → (−∞,∞] polyhedral if epi(f) is polyhedral.
Prove that any polyhedral function f admits the representation:

f(x) = max
i=1,...,n

{aTi x+ bi}+ δX (x), ∀x ∈ Rd

where n ≥ 0, X ⊆ Rd is a polyhedral set, and for i = 1, . . . , n, we have ai ∈ Rd and bi ∈ R.
(See Exercise 7.5 for a definition of δX . Hint: write f(x) = inf{t : (x, t) ∈ epi(f)}.)

Does the value function of a polyhedral program admit such a representation?

Exercise 8.5. Use the argument in the introduction to write a proof of Theorem 8.3 Part 1
under the additional assumption that (P) has an optimal solution. (Hint: Let y ∈ ∂val(b)
and consider the function cTx− 〈ATy, x〉 over the cone K.)

Exercise 8.6. Prove that val : Rd → (−∞,+∞] is closed if for every γ, τ ∈ R, the set

{x : cTx ≤ γ, ‖Ax‖ ≤ τ, x ∈ K}

is bounded. Under this condition, prove that whenever val(b) is finite, strong duality holds
(val = val∗) and there exists a primal optimal solution.

9 Subgradients: Existence, Optimality, and Calculus

Skills. Recognize and exploit convexity and its special cases (linear and conic program-
ming); Learn to “take a dual;” Recognize when “strong duality” holds. Compute first-order
necessary optimality conditions with nonsmooth calculus (subdifferentials, normal cones,
chain rule); Compute sensitivity of optimization problems with respect to perturbations of
input data (value functions).

The results of the last section connect the set of dual solutions of a conic program to “dif-
ferential” properties of the value function. The value function is not differentiable but it
is at least convex, and so we began our study of its subdifferential and showed under mild
conditions—mere nonemptyness—that the set of its subgradients and the set of dual solu-
tions coincide. We now take a deeper look into the existence of subgradients, their role in
first-order optimality conditions, and methods for computing them.

39

9.1 Existence of Subgradients

In some cases, subgradients exist throughout the domain of a function. Perhaps most strik-
ingly, this is the case for indicator functions of closed convex sets.

Lemma 9.1. Let X ⊆ Rd be a nonempty closed convex set. Then

∂δX (x) = NX (x), ∀x ∈ Rd.

On the other hand, consider the function f(x) = −
√
x + δR+(x): it is clearly closed,

convex, and differentiable at any positive x, but its subdifferential is empty at zero. Looking

epi(f)

Figure 7: The epigraph of f(x) = −
√
x+ δR+(x).

at Figure 7, we see the reason: a subgradient v must give rise to a supporting hyperplane of
the epigraph, but any supporting hyperplane at (0, 0) is vertical and thus not a linear under
approximator of f . The following theorem shows this is the only obstruction to the existence
of subgradients. (The reader should recall that a proper function takes at least one finite
value and never takes value −∞.)

Theorem 9.2 (Characterization of Subgradients). Let f : Rd → (−∞,∞] be a proper closed
convex function. Then for all x ∈ dom(f) it holds

Nepi(f)(x, f(x)) =
(
Ndom(f)(x)× {0}

)
∪ {λ(v,−1) : v ∈ ∂f(x), λ > 0}. (9.1)

Moreover, we have Nepi(f)(x, f(x)) 6= ∅ and

∂f(x) 6= ∅, ∀x ∈ int(dom(f)).

Proof. We begin with the equality. To that end, let x ∈ dom(f). We show that any pair
(w, s) ∈ Rd+1 is contained in the left hand hand side if and only if it is contained in the
right. To focus on a smaller set of s, we note that s ≤ 0 for all pairs in the union. Likewise,
for any normal (w, s) ∈ Nepi(f)(x, f(x)), it holds s ≤ 0 since (x, f(x) + 1) ∈ epi(f) and hence

0 ≥ 〈(w, s), (x, f(x) + 1)− (x, f(x))〉 = s.

Thus, we look at the cases s = 0 and s < 0 in turn.

40

First, a pair (w, 0) is normal to epi(f) if and only if

0 ≥ 〈(w, 0), (y, f(y) + t)− (x, f(x))〉 = 〈w, y − x〉, ∀t ≥ 0,∀y ∈ dom(f),

a condition equivalent to w ∈ Ndom(f)(x). Second a pair (w, s) with s < 0 is normal to epi(f)
if and only if

0 ≥ 1

−s
〈(w, s), (y, f(y)+t)−(x, f(x))〉 = 〈−(w/s), y−x〉+f(x)−f(y)−t, ∀t ≥ 0,∀y ∈ dom(f),

a condition equivalent to −(w/s) ∈ ∂f(x). Combining these equivalences, the equality holds.
To complete the proof, we show nonzero normals exist and moreover subgradients exist

at interior points. Nonzero normals exist since (x, f(x)) ∈ bdry (epi(f)), a consequence of
Corollary 4.3. Now let (w, s) ∈ Nepi(f)(x, f(x)) a nonzero normal and let x be interior to the
domain of f . By rescaling, we may assume s = 0 or −1. Since x is interior to the domain,
we have s < 0: if not, s = 0 and w ∈ Ndom(f)(x) = {0}, a contradiction.13 Thus, we must
have s = −1, implying w ∈ ∂f(x).

epi(f)

(v4;−1)

(v1; 0)

dom(f)

(v3; 0)

(v2;−1)

v1 v3

Figure 8: Normals to the Epigraph (compare with Figure 7)

Figure 8 illustrates the geometry of Theorem 9.2, showing that the normals to epi(f)
either point horizontally or correspond to subgradients. Importantly, there can be no hori-
zontal normals when x is interior to dom(f); trouble arises only at the boundary.

Corollary 9.3 (Existence of Subgradients without Closedness). Let f : Rd → [−∞,∞] be
a convex function, possibly not closed or proper. Suppose that x ∈ int(dom(f)) and f(x) is
finite. Then f is proper and

∂f(x) 6= ∅.

Proof. Since f(x) is finite and x ∈ int(dom(f)), we know that f never takes value −∞
(Exercise 2.6) and it is moreover continuous on the interior of its domain (Theorem 7.9). This
continuity implies f(x′) = cl f(x′) for all x′ ∈ int(dom(f(x))) and hence x ∈ int(dom(cl f)).
Thus, since cl f(x) is finite and x ∈ int(dom(cl f)), we know that cl f never takes value −∞
(Exercise 2.6) and applying the theorem, we have ∂cl f(x) 6= ∅. The proof is complete since
∂f(x) contains ∂cl f(x) (Exercise 8.3).

13See Exercise 3.2.

41

9.2 The Optimality Conditions of Conic Programming

Coupling Theorem 9.2 with Theorem 8.3, we give a simple sufficient condition, guaranteeing
optimal solutions exist. The reader should recall Definition 7.10 in the following Proposition.

Corollary 9.4 (Existence of Optimal Solutions to Conic Programs). If (P) is strongly
feasible and (D) is feasible, then val = val∗ and (D) has an optimal solution. Likewise,
if (D) is strongly feasible and (P) is feasible, then val = val∗ and (P) has an optimal
solution.

Proof. Under the first condition, there is a neighborhood U of b such that for all

+∞ > val(b′) ≥ a-val(b′) = sup{(b′)Ty : c− ATy} > −∞, ∀b′ ∈ U ,

where the equality is due to Theorem 7.7. From finiteness, both val and a-val are con-
tinuous on U (Theorem 7.9), implying both val(b) = a-val(b) = val∗ and ∂val(b) 6= ∅
(Corollary 9.3). To complete the proof, recall that ∂val(b) comprises the set of dual solu-
tions (Theorem 8.3). We leave the dual statement as an Exercise.

Let us pause to reflect on this corollary and to connect it to optimality conditions in conic
programming. More specifically, consider the following primal-dual system in the variables
x, s ∈ Rd and y ∈ Rm:14

Ax− b = 0 (primal feasibility)

ATy + s− c = 0 (dual feasibility)

〈s, x〉 = 0 (complementary slackness)

x ∈ K, s ∈ K∗ (nonnegativity)

(PDSYS)

We can relate solutions of this system to optimal solutions of the conic program:

(Sufficiency.) Given any solution (x, s, y) to this system, the vector x is primal
feasible, the vector y is dual feasible, and

0 = 〈s, x〉 = 〈c− ATy, x〉 = cTx− (Ax)Ty = cTx− bTy.

Applying Weak Duality, we find that x and y are primal and dual optimal respectively:

cTx ≥ val ≥ val∗ ≥ bTy =⇒ val = val∗.

(Necessity.) On the other hand, suppose there exists primal optimal x∗ and dual
optimal y∗ and val = val∗. Setting s∗ = c − ATy∗, we find that s∗ ∈ K∗ and
complementary slackness holds. Hence, (x∗, s∗, y∗) solves the primal-dual system.

This argument and Corollary 9.4 yield the following theorem, underlying much algorith-
mic work in conic optimization.

14The vector s is often called a slack variable

42

Theorem 9.5 (Optimality Conditions of Conic Programming). Suppose (P) is strongly
feasible and (D) is feasible. Then a vector x is primal optimal if and only if there exists
y ∈ Rm so that (x, c− ATy, y) solves (PDSYS). In this case, any such y is dual optimal.

Similarly, suppose (D) is strongly feasible and (P) is feasible. Then a point y ∈ Rm is
dual optimal if and only if there exists x ∈ Rd so that (x, c − ATy, y) solves (PDSYS). In
this case, any such x is primal optimal.

Complementary slackness is important for algorithm design since with it one can check
whether a candidate solution is optimal, simply by solving a small linear equation, at least
when K = Rd. This is so since the vectors x and s are nonnegative, and thus if xi > 0,
then si = 0 and (ATy)i = ci. Linear programs enjoy an even stronger result: when optimal
solutions exist, to some primal solution x there corresponds a dual solution y and slack
variable s = c−ATy such that s is strictly complementary to x: xi > 0 if and only if si = 0.
You will prove this fact in the Exercises.

Theorem 9.6 (Optimality Conditions of Linear Programming). Suppose K = Rd
+ and

both (P) and (D) are feasible. Then a vector x is primal optimal if and only if there exists
y ∈ Rm so that (x, c − ATy, y) solves (PDSYS). In this case, any such y is dual optimal.
Moreover, there exists a primal optimal x, a dual optimal y, and slack variable s = c−ATy
such that strict complementary slackness holds:

xi > 0 if and only if si = 0, for i = 1, . . . , d (SCS)

Likewise a point y ∈ Rm is dual optimal if and only if there exists x ∈ Rd so that (x, c−ATy, y)
solves (PDSYS). In this case, any such x is primal optimal. Finally, the pair (x, y) is primal
dual optimal if and only if (x, c− ATy, y) solves (PDSYS).

To see the algorithmic utility of complementary slackness, consider the primal-dual pair
of linear programs:

minimize 0x1 + 3x2 + 0x3 + 3x4

subject to :

[
−1 2 0 1
0 1 −1 2

]
x1

x2

x3

x4

 =

[
4
5

]
[
x1, x2, x3, x4

]
≥ 0

,

maximize 4y1 + 5y2

subject to :


−1 0
2 1
0 −1
1 2

[y1

y2

]
≤


0
3
0
3



Suppose we have the primal feasible point x = (0, 1, 0, 2) and we want to know whether x is
optimal. If x were optimal, there would exist a dual feasible y so that the second and fourth
constraints of the dual linear program are active, meaning[

2 1
1 2

] [
y1

y2

]
=

[
3
3

]
.

The unique solution to this equation is y = (1, 1). A quick check shows that this y is dual
feasible. Thus the triple (x, c−ATy, y) is a solution to the primal-dual system and the pair
(x, y) is primal-dual optimal.

43

9.3 Optimality Conditions in General

We have so far seen two sorts of optimality conditions: those arising from conic programs
and those arising from certain mathematical programs. Both are united by the following far
reaching generalization of Fermat’s rule.

Theorem 9.7 (Fermat’s Rule). Let f : Rd → (−∞,∞] be a proper function and suppose
that x̄ is a local minimizer of f . Then

0 ∈ ∂Ff(x̄).

If moreover f is convex, the condition 0 ∈ ∂f(x) is both necessary and sufficient for x to be
a global minimum.

Let us illustrate Fermat’s rule with the conic program (P). To that end, define

f(x) := 〈c, x〉+ δK(x) + δ{x : Ax=b}(x).

Then x is a minimizer of the conic program (P) if and only if

0 ∈ ∂f(x) = ∂(〈c, ·〉+ δK(·) + δ{x : Ax=b}(·))(x)
?
= c+NK(x) +N{x : Ax=b}(x).

Using the identities NK(x) = −K∗ ∩ {x}⊥ and N{x : Ax=b}(x) = {ATy : y ∈ Rm, Ax = b} for
feasible x, we find that x is a minimizer if and only if it is primal feasible and there is a
y ∈ Rm with

c− ATy ∈ K∗ ∩ {x}⊥.

Equivalently, the triple (x, c− ATy, y) satisfies the primal-dual system (PDSYS), meaning
the pair (x, y) is primal-dual optimal.

Though appealingly simple, this argument is not valid in general since the sum rule

∂(f + g)
?
= ∂f +∂g can fail, even in R2. For example, consider the indicator functions of the

unit balls centered at (−1, 0) and (1, 0):

f(x) = δB1(−1,0) and g = δB1(1,0).

Then since f + g = δ{0}, we have

∂(f + g)(0) = R2 6= R× {0} = ∂f(0) + ∂g(0),

a failure. Nevertheless, the sum rule can succeed, and in the next section, we learn when it
does.

9.4 Calculus

Nonsmooth calculus offers another perspective on duality, and leads to primal-dual systems
for general convex programs. We have verified this claim for conic programs, at least when
a “sum rule” holds. Even for conic programs, counterexamples show that the classical
rules from multivariate calculus can fail. In this section, we determine when they succeed.
Beginning with differentiable functions, we show that subgradients are full-fledged gradients.

44

Lemma 9.8 (Differentiable Functions). Let f : Rd → (−∞,∞] be a proper convex function.
Then if f is Fréchet differentiable at x, it holds

∂f(x) = {∇f(x)}.

Proof. The gradient ∇f(x) is a subgradient by Lemma 8.2. On the other hand, if v ∈
∂f(x), then x minimizes the differentiable function f(x′)− 〈v, x′〉. By first-order optimality
conditions ∇f(x)− v = 0. This completes the proof.

Perhaps less surprising is the following partial sum rule, saying if one is given two func-
tions and a linear under approximator for each, one may add them together and get a linear
under approximator of the sum.

Lemma 9.9 (Partial Sum Rule). Let f, g : Rd → (−∞,∞] be proper convex functions. Then

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x) ∀x ∈ dom(f) ∩ dom(g).

A similar argument leads to the following exact sum rule for separable functions.

Lemma 9.10 (Separable Sum Rule). Let d = d1 + . . .+ dn for integers di and let fi : Rdi →
(−∞,+∞] be proper convex functions. Then

∂(f1 + . . .+ fn)(x1, . . . , xn) = ∂f1(x1)× . . .× ∂fn(xn) ∀xi ∈ dom(fi)

This rule is exact since one can vary the coordinates independently, an impossibility in
Lemma 9.9.

Finally, a partial chain rule holds.

Lemma 9.11 (Partial Chain Rule). Let f : Rm → (−∞,∞] be a proper convex function and
let A ∈ Rm×d be a matrix. Then

AT∂f(Ax) ⊆ ∂(f ◦ A)(x) ∀x ∈ A−1(dom(f)).

Proof. Given v ∈ ∂f(Ax), one has 〈v,Ax′−Ax〉+ f(Ax) ≤ f(Ax′) for any x′ ∈ dom(f ◦A).
Since 〈v,Ax′ − Ax〉 = 〈ATv, x′ − x〉, the inclusion holds: ATv ∈ ∂(f ◦ A)(x).

We warn that equality can fail since the chain rule extends the sum rule. For example,
stacking two identity matrices

A =

[
Id
Id

]
and defining the separable sum h(y, z) = f(y) + g(z), we find two distinct sets, unequal in
general:

AT∂h(Ax) = ∂f(x) + ∂g(x) and ∂h(Ax) = ∂(f + g)(x).

When then do nonsmooth calculus rules hold? The key enabling condition, used in the next
theorem, is known as a constraint qualification, and as we will see, it generalizes the strong
feasibility condition of conic programming.

45

Theorem 9.12 (Chain Rule). Let f : Rd → (−∞,∞] and g : Rm → (−∞,∞] be proper
convex functions and let A ∈ Rm×d. Suppose the following regularity condition holds

0 ∈ int(dom(g)− Adom(f)).

Then equality holds

∂(f + g ◦ A)(x) = ∂f(x) + AT∂g(Ax), ∀x ∈ dom(f + g ◦ A).

In particular, equality holds if either (a) g is continuous at a point in Adom(f) or (b)
rank(A) = m and f is continuous at a point in A−1(dom(g)).

Proof. Applying the earlier results, it holds ∂f(x) +AT∂g(Ax) ⊆ ∂(f + g ◦ A)(x). We may
thus assume that ∂(f + g ◦ A)(x) is nonempty, since otherwise there is nothing to prove.
Then letting v ∈ ∂(f + g ◦ A)(x), Lemma 8.2 shows

x minimizes f(x′) + g(Ax′)− 〈v, x′〉.

To see how v relates to the subdifferentials of f and g, we place this problem within a larger
family of perturbed programs and track the values of the perturbations with a value function
V : Rm → [−∞,∞]:

V (b) := inf
x′∈Rd
{f(x′) + g(Ax′ + b)− 〈v, x′〉}, ∀b ∈ Rm.

Crucial to understanding v is the following claim: ∂V (0) 6= ∅. The claim follows since V is
convex (check!) and V meets the criteria of Corollary 9.3: First V (0) = f(x)+g(Ax)−〈v, x〉
is finite. Second the domain of V is simply dom(V) = dom(g)−Adom(f), so by assumption
0 ∈ int(dom(V)).

Thus, letting w ∈ ∂V (0), we have

0 ≤ V (b)− V (0)− 〈w, b〉
≤ f(x′) + g(Ax′ + b)− 〈v, x′〉 − (f(x) + g(Ax)− 〈v, x〉)− 〈w, b〉, ∀b ∈ Rm,∀x′ ∈ Rd

Let us test against various x′ and b, showing that v − ATw ∈ ∂f(x) and w ∈ ∂g(Ax):

(v − ATw ∈ ∂f(x)). Let x′ ∈ dom(f) and b = Ax− Ax′. Then

0 ≤ f(x′)− f(x)− 〈v, x′ − x〉 − 〈w,A(x′ − x)〉
= f(x′)− f(x)− 〈v − ATw, x′ − x〉, ∀x′ ∈ dom(f).

Therefore, v − ATw ∈ ∂f(x).

(w ∈ ∂g(Ax)). Let x′ = x, then

sss

Therefore, w ∈ ∂g(Ax).

To complete the proof, write v = (v−ATw) +ATw ∈ ∂f(x) +AT∂g(Ax), as desired.

46

Let us return to the primal conic program (P) and see the consequences of the chain
rule. To that end, define

f(x) := δK(x) + cTx and g(y) := δ{b}(y), ∀x ∈ Rd,∀y ∈ Rm,

and observe that x minimizes (P) if and only if x minimizes f + g ◦A. At any such optimal
point, Fermat’s rule says 0 ∈ ∂(f + g ◦ A)(x). With the chain rule we can compute this
subdifferential if the constraint qualification holds:

0 ∈ int(dom(g)− Adom(f)) = int(b− AK).

This condition in turn is equivalent to strong feasibility of (P). Thus if (P) is strongly
feasible, the chain rule shows

0 ∈ ∂(f + g ◦ A)(x)

= ∂f(x) + AT∂g(Ax)

= c+ ∂δK(x) + AT∂δ{b}(Ax)

= c+NK(x) + ATRd,

Equivalently, a feasible x solves (P) if and only if there exists y ∈ Rd such that

(c− ATy) ∈ K∗ ∩ {x}⊥,

where we simplified the inclusion with the help of the equality NK(x) = −K∗ ∩ {x}⊥ (Ex-
ercise 6.2). In short, for any (x, y) that solves the inclusion, the triple (x, c − ATy, y)
solves the primal-dual system (PDSYS), meaning the pair (x, y) is primal-dual optimal
and val = val∗.

Beyond their role in optimality conditions, subdifferentials feature in modern large scale
optimization algorithms. We will explore this in the next section.

9.5 Exercises

Exercise 9.1 (Strict Complementary Slackness). In this exercise, we examine the strict
complementary slackness condition. To that end consider the following primal-dual pair of
linear programs:

minimize cTx

subject to : Ax = b

x ∈ R+

maximize bTy

subject to : ATy + s− c = 0

s ≥ 0

(9.2)

Throughout this exercise, we suppose that optimal solutions exist. Consider the following
condition.

47

Condition. Suppose that there is some j ∈ {1, . . . , d} so that every optimal solution x∗

satisfies x∗j = 0.

In the next three parts, suppose the above condition holds. Under this condition, we will
prove there is a dual optimal pair (y, s) with sj > 0.

1. Consider the following linear program:

minimize −xj
subject to : Ax = b

cTx ≤ val

x ≥ 0.

Show that its dual is
maximize bTy − tval

subject to : ATy − tc+ s = −ej
s, t ≥ 0,

where ej denotes the jth standard basis vector. Prove that this dual has an optimal
solution (ȳ, t̄, s̄) and show that bT ȳ = t̄val.

2. Suppose t̄ > 0 and let y = ȳ/t and s = (s̄ + ej)/t̄. Prove that sj > 0 (obvious) and
(y, s) solves the original dual problem.

3. Suppose that t̄ = 0. Find an optimal solution (y, s) to the original dual problem with
sj > 0.

Using the above results, we can construct a primal-dual pair satisfying the strict comple-
mentary slackness condition. To that end, define a subset of indices J ⊆ {1, . . . , d} by the
following formula

J := {j : ∃ primal optimal x with xj > 0}.
Using J , we will construct a sequence (x1, y1), . . . , (xd, yd) of primal-dual optimal pairs with
the following properties: For each j ∈ J , we let yj be an arbitrary dual optimal solution and
let xj be a primal optimal solution with xjj > 0. On the other hand, for each j /∈ J , we let xj

be an arbitrary primal optimal solution and let yj be a dual optimal optimal solution with
(c− ATyj)j > 0 (exists by Parts 1-3). Given these primal-dual optimal pairs, define

x∗ :=
1

d

d∑
j=1

xj and y∗ :=
1

d

d∑
j=1

yj.

4. Bonus. Show that the pair (x∗, y∗) is primal-dual optimal and in addition satisfies
strict complementary slackness, namely,

x∗j > 0 if and only if (c− ATy∗)j = 0, ∀j

Exercise 9.2 (Existence of Optimal Solutions). Prove the second statement of Corol-
lary 9.4. (Hint: Leverage the symmetry between primal and dual programs, using the
discussion that closed Section 7.2.)

48

Exercise 9.3 (Fermat’s Rule). Prove Theorem 9.7.

Exercise 9.4 (The Value Function is Convex). Show that the function V in Theo-
rem 9.12 is convex.

Exercise 9.5 (Easy Subdifferential Facts).

1. Let f : Rd → (−∞,∞] be a closed, proper, convex function. Show that for all x ∈
dom(f), the set ∂f(x) is closed and convex.

2. Let d = d1 + . . . + dn for integers di and let fi : Rdi → (−∞,+∞] be proper convex
functions. Then

∂(f1 + . . .+ fn)(x1, . . . , xn) = ∂f1(x1)× . . .× ∂fn(xn) ∀xi ∈ dom(fi)

3. Let f : Rd → (−∞,∞] be a closed, proper, convex function and let λ > 0. Then prove
that the function g = λf is satisfies

∂g(x) = λ∂f(x), ∀x ∈ dom(f).

4. Let f : Rd → (−∞,∞] be a closed, proper, convex function and let b ∈ Rd. Then prove
that the shifted function g(·) = f((·) + b) satisfies

∂g(x) = ∂f(x+ b), ∀x ∈ dom(f)− {b}.

.

Exercise 9.6 (Subdifferential of Scaling). Let f : Rd → (−∞,∞] be a closed, proper, convex
function and let λ > 0. Then prove that the function g = λf is satisfies

∂g(x) = λ∂f(x), ∀x ∈ Rd.

Exercise 9.7 (Subgradient Computations). Compute the subdifferentials of the following
functions on Rd (some are differentiable, others are easy applications of the chain rule):

1. `1 norm. f(x) = ‖x‖1 =
∑d

i=1 |xi|.
2. Hinge loss. f(x) = max{0, x} (where d = 1).
3. Hybrid Norm. f(x) =

√
1 + x2 (where d = 1).

4. Logistic function. f(x) = log(1 + exp(x)) (where d = 1).
5. Indicator of `p ball. f(x) = δX (x) where for p ∈ [1,∞] and τ > 0, we have
X = {x : ‖x‖p ≤ τ}.

6. Max of coordinates. f(x) = max{x1, . . . , xd}.
7. Polyhedral Function. f(x) = maxi≤m{〈ai, x〉+bi} where a1, . . . , am ∈ Rd are vectors

and b1, . . . , bm ∈ R
8. Quadratic. f(x) = 1

2
〈Ax, x〉 for some symmetric matrix A ∈ Rd×d.

9. Least Squares. f(x) = 1
2
‖Ax− b‖2

2 where A ∈ Rm×d and b ∈ Rm.
10. Least Absolute Deviations. f(x) = ‖Ax− b‖1 where A ∈ Rm×d and b ∈ Rm.

49

Exercise 9.8 (Mean Value Theorem). Suppose f : Rd → R is a closed convex function and
let x, y ∈ Rd. Show that there exists t ∈ [0, 1] such that

f(x)− f(y) ∈ 〈x− y, ∂f((1− t)x+ ty)〉

(Hint: consider the convex function t 7→ f((1 − t)x + ty) + t(f(x) − f(y)) on the compact
interval [0, 1].)

The next exercise relies on the following definition.

Definition 9.13 (Lipschitz Continuity). A function f : Rd → R is called Lipschitz contin-
uous if

|f(x)− f(y)| ≤ L‖x− y‖, ∀x, y ∈ Rd.

for some L > 0. The constant L is called a Lipschitz constant of f .

Exercise 9.9 (Bounded Subgradients and Lipschitz Continuity). Let f : Rd → R be a closed
convex function. Show that f is Lipschitz continuous with Lipschitz constant L if and only
if for any x ∈ Rd, we have

v ∈ ∂f(x) =⇒ ‖v‖ ≤ L.

Exercise 9.10. Let X ⊆ Rd be a closed convex set. Define the distance function

dist(x,X) := inf
y∈X
‖y − x‖, ∀x ∈ Rd.

Prove that dist(x,X) is closed, convex, and 1-Lipschitz continuous. Show that

∂dist(x,X) =

{
NX (x) if x ∈ X{

1
dist(x,X)

(x− projX (x))
}

otherwise.

Exercise 9.11. Let f : Rd → (−∞,∞] be a closed, proper, and convex function. Prove that
there exists x ∈ Rd such that ∂f(x) 6= ∅. (Hint: let x0 ∈ Rd be a point where f(x0) is finite
and consider the closed, proper, and convex function g = f + δB1(x0). Use Exercise 2.5 to
show that g has a minimizer x̄ ∈ B1(x0). Fermat’s rule then shows that 0 ∈ ∂g(x̄). Conclude
by using Theorem 9.12 to show 0 ∈ ∂f(x̄) + ∂δB1(x0)(x̄).)

10 First-Order Models and Algorithms

Skills. Learn a toolbox of algorithms (first order methods); Choose appropriate algorithms
by understanding tradeoffs induced by problem structure; Characterize algorithmic complex-
ity.

It is now a natural time to reflect on the aim of this course, which was for you to acquire
a firm working knowledge of the techniques and results of modern optimization, focusing on
structure, duality, nonsmooth calculus, and algorithms. We have so far developed skills in

50

the first three areas, first emphasizing the role of convexity in the duality and sensitivity
theory of conic programing and second establishing a rich calculus of necessary and sufficient
optimality conditions for convex programs. The aim of this section is to bring these skills to
bear on algorithm design in convex optimization.

To fix notation, we assume throughout this section that we wish to

minimize f(x)

where f : Rd → (−∞,∞] is a proper closed convex function that has a nonempty set of
minimizers X ∗ = argmin f . As we move through the section we will place further useful
assumptions on f , for example, continuity or differentiability, but for now we consider this
simple setting. We take the view that finding an exact minimizer of f may be impossible,
which leads us to instead search for approximate minimizers x̂ of f . We can measure how well
x̂ minimizes f in a couple of ways, for example, by measuring its objective error f(x̂)− inf f .
Our goal is to design algorithms that take as input ε > 0 and output approximate minimizers
x̂ with objective error less than ε: f(x̂)− inf f ≤ ε.

f

gU

gL

Figure 9: Tight upper and lower approximation of a function.

To find approximate minimizers of f we follow a well-worn path: we approximate f by
a model function and then minimize this model. The hope is that minimizers of the model
are approximate minimizers of f . For example, consider the lucky situation in Figure 9. We
seek to minimize f , and we are in possession of both an upper model gU and a lower model
gL, having the following properties:

gL(x) ≤ f(x) ≤ gU(x), ∀x and |gL(x)− gU(x)| ≤ ε, ∀x.

Owing to their simplicity, we easily identify 0 to be the minimizers of gL and gU , and since
gL and gU tightly approximate f , we expect 0 to nearly minimize f as well. Indeed, letting
x∗ minimize f , we can upper bound the objective error f(0)− inf f as follows:

f(0) ≤ gU(0) ≤ gL(0) + ε ≤ gL(x∗) + ε ≤ inf f + ε

Thus 0 nearly minimizes f , and the algorithm was successful.
Though successful in this example, we typically cannot implement algorithms based on

tight global models, since in practice such models are hard to come by. Despite the imprac-
ticality of this idea, we can still salvage its overarching strategy by carrying it out iteratively

51

using local models in the following way: we build a local model of f , minimize it in a small
neighborhood, build a new model of f at this minimizer, and so on. Such algorithms form
a sequence of iterates : x0, x1, . . . that we view as approximate minimizers of f . The goals
of this section are to show one can in fact generate approximate minimizers of f using this
strategy, and in addition that one can give estimates for how quickly the iterates approach
a minimizer of f . To show this, we must first develop a proper notion of a local model, and
then design algorithms that profitably use them.

10.1 From Global to Local Models

Let us give a preview of things to come with linear models and two classical algorithms: the
gradient descent algorithm and the subgradient method.

10.1.1 Linear Models: Gradient Descent and the Subgradient Method

The gradient descent algorithm applies to differentiable f and is based on the following
classical fact from calculus: the derivative of a function ϕ : R→ R gives rise to a local linear
approximation of ϕ: ϕ(t) ≈ ϕ(t0) +ϕ′(t0)(t− t0). The Fréchet gradient (Definition 3.1) lifts
this approximation to higher dimensions:

f(y) ≈ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ Rd.

To use this approximation in an algorithm, we define the following linear model of f at any
x: fx(y) := f(x) + 〈∇f(x), y− x〉 for all y ∈ Rd.15 Then we define a procedure that in some
sense locally minimizes the models fx: given x0, . . . , xk, define the next iterate xk+1 by

xk+1 = argmin
y

{
fxk(y) +

ρk
2
‖y − xk‖2

}
, (10.1)

for some ρk > 0. Let us unpack this rule and develop intuition, especially for the scalar ρk.
To that end, consider the limiting case where ρk = 0. In this case, the iterate xk+1 is the
minimizer of the linear function fxk(y) over all y ∈ Rd. A little thought shows that unless fxk
is constant (meaning ∇f(xk) = 0), xk+1 cannot exist, since linear functions are unbounded
below. Keeping this in mind, we see the necessity of the quadratic penalty ρk

2
‖y− xk‖2 with

ρk > 0: the upward pull of the penalty not only forces the function fxk(y)+ ρk
2
‖y−xk‖2 to be

bounded below, but also forces xk+1 to stay near xk where the model is most accurate. All
the while the update allows for some decrease in the linear model fxk , and if fxk approximates
f well enough, it is possible that f decreases as well. We can see the role of ρk even more
readily by directly computing xk+1 (check!):

xk+1 = xk −
1

ρk
∇f(xk). (GD)

From this form, we see that larger values of ρk lead xk+1 to be nearer to xk, while in the case
ρk = 0, the iterate xk+1 is ill-defined. This form also shows that the intuitive idea of locally

15We will use this notation throughout the section to denote models “centered” at a point x. For now we
focus on linear models to establish the basic ideas.

52

minimizing linear models give rise to the classical gradient descent algorithm, originally
introduced by Cauchy in 1847.

Moving beyond differentiable functions, the subgradient method builds local linear models
not from gradients, but from subgradients: given x ∈ Rd and vx ∈ ∂f(x) we define

fx(y) := f(x) + 〈vx, y − x〉, ∀y ∈ Rd.

Applying Algorithm (10.1) to these models, we arrive at the classical subgradient method of
Shor: given x0, . . . , xk, choose vk ∈ ∂f(xk) and define the next iterate xk+1 by

xk+1 = xk −
1

ρk
vk. (SM)

Fixing these algorithms, we next seek to understand how quickly the iterates x0, x1, . . .
approach an approximate minimizer. In seeking to quantify the the speed of an algorithm,
we typically ask for lower and upper bounds on a certain function K(ε) of the target accuracy
ε > 0, defined as follows: for any ε > 0, we let K = K(ε) > 0 be the smallest integer with
f(xK) − inf f ≤ ε.16 The function K(ε) is called the iteration complexity of the algorithm.
Intuitively, those algorithms with “smaller” complexity approach minimizers faster.

As one would suspect, useful bounds on complexity require the models fx to be “close
enough” to f , and models that poorly approximate f may lead to the estimate K(ε) = +∞.
For example, the loss f(x) = exp(x) + exp(−x) is poorly approximated by its linear model,
since it grows exponentially fast. To see the effect of this poor approximation, we apply
the gradient descent algorithm (GD) to f with starting point x0, generating the following
sequence:

xk+1 = xk − (1/ρ)f ′(xk) = xk − (1/ρ)(exp(xk)− exp(−xk)).

It is then a simple exercise to show that for any ρ there is an initial point x0 for which the
sequence xk quickly diverges (check!).

Given that poor approximations can lead to divergence, we see that we must impose
some conditions on how well fx approximates f . Classically, two types of conditions have
featured: fixing q, l ≥ 0, we say a model is q-quadratically accurate at x if

fx(y) ≤ f(y) ≤ fx(y) +
q

2
‖y − x‖2, ∀y ∈ Rd. (10.2)

and we say a model is linearly accurate at x if

fx(y) ≤ f(y) ≤ fx(y) + l‖y − x‖, ∀y ∈ Rd. (10.3)

See Figure 10 for an illustration.
To ensure models are quadratically or linearly accurate, the literature on gradient and

subgradient methods typically refer to one of two sufficient conditions, both of which ensure
different bounds on the complexity K(ε). First in order to ensure a linear model is quadrat-
ically accurate, the function f is assumed to be differentiable and its gradient is assumed to
be Lipschitz. We will prove this result in Section 10.6.

16Here we deliberately suppress the dependence of K(ε) on other quantities, such as x0 and f .

53

1

f fx

fx(y) + 2|y − 1|

1

f fx

fx(y) + 3
2
(y − 1)2

Figure 10: Linearly and quadratically accurate models.

Proposition 10.1 (Lipschitz Gradient and Quadratically Accurate Model). Suppose that f
is differentiable and that ∇f is q̂-Lipschitz for some q̂ > 0, meaning

‖∇f(x)−∇f(y)‖ ≤ q̂‖x− y‖, x, y ∈ Rd.

Then the linear model fx(y) = f(x) + 〈∇f(x), y − x〉 q̂-quadratically accurate.

Next in order to ensure a linear model is linearly accurate, the function f is assumed to
be Lipschitz continuous. We will prove this result in Section 10.6.

Proposition 10.2 (Lipschitz Function and Linearly Accurate Model). Suppose that f is
l̂-Lipschitz for some l̂ > 0:

|f(x)− f(y)| ≤ l̂‖x− y‖, ∀x, y ∈ Rd.

Then any linear model fx(y) = f(x) + 〈vx, y − x〉 with vx ∈ ∂f(x) is (2l̂)-linearly accurate.

Having seen that simple sufficient conditions lead to accurate linear models, we now
discuss the complexity of the gradient and subgradient methods. First if f is Fréchet dif-
ferentiable and ∇f is q̂ Lipschitz continuous, we will later show in Corollary 10.13 that the
gradient descent algorithm (GD) with ρk ≡ q̂ has complexity

K(ε) ≤
⌈
q̂ · dist2(x0,X ∗)

2ε

⌉
. (10.4)

Second if f is l̂-Lipschitz, we will later show that the subgradient method (SM) with ap-
propriate ρk has complexity

K(ε) ≤
⌈

4l̂2 · dist2(x0,X ∗)
ε2

⌉
. (10.5)

Two important issues are how these complexities compare and whether they can be improved.
The complexities shown above differ from each other substantially in their dependence

on ε as ε→ 0 (1
ε
� 1

ε2
), showing the subgradient method is much “slower” than the gradient

method. We should intuitively expect this result, since quadratically accurate models give
tighter approximations near the base point: q

2
‖x − y‖2 � l‖y − x‖ as y → x. We will

54

later verify this intuition and show it is impossible to improve the complexity of any natural
variation of the basic “subgradient method”—a classical result of Nemirovski and Yudin [?].
This result implies that there is a complexity gap between those algorithms based on linearly
accurate models and those based on quadratically accurate models. Surprisingly, we will
show the gap 1

ε
� 1

ε2
can be further widened. In particular, we will also show that a suitable

“acceleration” of the gradient method improves the dependence of the complexity on ε from
1
ε

to 1√
ε
.17 This 1√

ε
complexity is then unimprovable in general, providing a useful goalpost

for us to aim for.

10.1.2 Beyond Linear: Clipped, Aggregated, Projected, Proximal, and Max-
linear Models

The above examples illustrate the ideas underlying the class of first-order methods in op-
timization. Such methods build local models fx not from second or higher derivatives of
f , but from zeroth or first-order characteristics of f , for example, from its function val-
ues, gradients, and subgradients. Given such models, most first-order methods use them
in algorithms similar and often identical to (10.1), with the quadratic penalty ρk

2
‖y − xk‖2

playing a central role. Departing from the setting of gradient and subgradient methods, we
will show in this section that we need not restrict ourselves to linear or even differentiable
models. Because of this flexibility, we will be able to design local models that more closely
approximate the geometry of f , while being “simple enough” to locally minimize. Key to
developing this theory is to view (10.2) and (10.3) not as conditions for linear models to
satisfy, but as definitions in their own right, opening the door to a more expressive class of
models. In keeping with theory of first order methods, however, we will not explicitly discuss
algorithms based on higher order derivatives, since the complexity theory of such methods
requires different techniques and tools than developed here.

A goal in the analysis of first-order methods is to give dimension-free results, where
the number of variables d does not appear in complexity bounds. Looking back on (10.4)
and (10.5), we see that both results are dimension-free, and when we later prove complexity
results for more general classes of models they too will be independent of d. Since such
bounds do not depend on d, first-order methods are thought to be uniquely scalable to
large-scale problems in high-dimensions. Still the “work” or the per-iteration complexity of
implementing a first-order method must in some way scale with d, since even updating xk
to xk+1 in the subgradient method takes d arithmetic operations in general. For example,
the per iteration costs O(d) or O(d log d) are “good,” while the per iteration cost O(d2) is
“bad.”

Moving beyond the classical linear models considered above, we will find it helpful to
combine the class of linearly and quadratically accurate models. To that end, we call a
proper closed convex function fx : Rd → (−∞,+∞] an (l, q)-model of f at x if

fx(y) ≤ f(y) ≤ fx(y) + l‖x− y‖+
q

2
‖x− y‖2, ∀y ∈ Rd. (M)

We caution the reader that this is not standard terminology. We introduce this terminology
because it simplifies the statements and proofs of various results in this section. The reader

17The first such accelerated gradient method that achieved it was developed in a famous 1983 paper of
Nesterov.

55

should keep in mind the important classes of examples: quadratically accurate and linearly
accurate models.

To further ground this discussion, we isolate the core algorithmic operation used through-
out this section, namely for a fixed x ∈ Rd and ρ > 0 choose a model fx and define x+ to be
the minimizer of the following problem, closely mirroring (10.1):

x+ = argmin
y∈Rd

{
fx(y) +

ρ

2
‖y − x‖2

}
. (10.6)

We will later show that x+ is in fact the unique minimizer of this problem, but let us delay
this for a moment. While we will soon take up the complexity theory of algorithms based on
repeatedly solving problems of the form (10.6), for now we mention only that the complexity
of such algorithms closely mirrors that of the gradient and the subgradient method, which
was discussed at the end of Section 10.1.1. Despite matching the complexity, the crucial
difference is that the subproblems (10.6) may be much harder to solve. Nevertheless, in
some cases nonlinear models are available when accurate linear models fail to exist, for
example, when f takes value +∞, as we will soon see.

In what follows, we introduce a few common “structures” that aid in building models of
f and then discuss algorithms that arise from these models.

Clipped and Aggregated Methods. Suppose that we can create (l, q) models for a
function f at any point x. In seeking to tighten these models, there are two natural strategies.

The first strategy—called clipping—assumes that we have access to a global lower bound
lb on f : f(y) ≥ lb for all y ∈ Rd. If we do have such a lower bound, then the function

y 7→ max{fx(y), lb}

is itself an (l, q) model of f at x (see Figure 11).
The second strategy—called aggregation—iteratively constructs tighter and tighter ap-

proximations of f by aggregating (l, q) models fxi of f , centered at points xi. For example,
xi may be the iterates generated by an algorithm. If we have a sequence of such (l, q) models
fx1 , . . . , fxk , then

y 7→ max{fx1(y), . . . , fxk(y)}

is an (l, q) model of f at the point xk (see Figure 11).
The two claims above follow by alternatively setting g ≡ lb and g = maxi≤k−1 fxi in the

following proposition (you will prove this in the exercises).

Proposition 10.3 (Clipping/Aggregation). Let x ∈ Rd and suppose that fx is an (l, q)
model of f at x. Moreover, assume that g : Rd → (−∞,∞] is closed, proper, convex, and
dominated by f : g(y) ≤ f(y) for all y ∈ Rd. Then

max{fx, g}

is an (l, q)-model of f at x.

56

1

f
fx

max(fx, lb)

f
fx1

fx2

max(fx1 , fx2)

Figure 11: Clipped (left) and agreggated (right) models.

Turning to algorithms, the clipping strategy gives rise to the following method: given
x0, . . . , xk, choose an (l, q) model of f at xk and define xk+1 by

xk+1 = argmin
y∈Rd

{
max{fxk(y), lb}+

ρk
2
‖y − xk‖2

}
, (CLIP)

While in general there is no closed form solution for xk, if fxk(y) = 〈a, y〉 + b is an affine
function, for example, a linear model arising from gradients or subgradients, then

xk+1 = xk − clip

(
ρk
‖a‖2

(〈a, xk〉+ b− lb)

)
a

ρk
where clip(t) = max{min{t, 1}, 0}.

(10.7)

(You will prove this in the exercises.) On the other hand, the aggregation strategy gives
rise to the following algorithm: given x0, . . . , xk, choose an (l, q) model of f at xk and define
xk+1 by

xk+1 = argmin
y∈Rd

{
max{fx1(y), . . . , fxk(y)}+

ρk
2
‖y − xk‖2

}
, (AGG)

for some ρk > 0. We caution the reader that each step of the algorithm becomes increasingly
costly since the “max” function increases in complexity at each stage. In particular, there
is no closed form formula for the steps of the algorithm.

Projected and Proximal Methods. Suppose that minimizing the function f amounts
to minimizing a continuous convex function over a convex set. In other words, suppose that
f admits a decomposition

f(y) = g(y) + δX (y), ∀y ∈ X ,

where g : Rd → (−∞,∞] is a continuous convex function and X ⊆ Rd is a closed convex set.
To construct a model for f , a natural strategy is to first approximate g with a model gx and
then form the sum fx := gx + δX .

For example, for every x ∈ Rd define the (sub)gradient model gx(y) := g(x) + 〈vx, y− x〉
for some vx ∈ ∂g(x). Then based on using the model fx := gx + δX in (10.6), we derive the

57

classical projected subgradient method : given x0, . . . , xk define xk+1 by

xk+1 = argmin
y∈Rd

{
gxk(y) + δX (y) +

ρk
2
‖y − xk‖2

}
, (PROJ)

for some ρk > 0. As a bit of algebra shows, every step of this algorithm admits a “closed
form” solution (check!)

xk+1 = projX

(
xk −

1

ρk
vxk

)
.

The formula is of course not truly “closed form” unless projecting onto X is “simple enough.”
Nevertheless for a variety of important convex sets, there is a closed form solution to the
projection. To support this claim, we will give a few examples in the exercises.

The following proposition shows that fx is indeed a valid approximation (you will prove
this in the exercises).

Proposition 10.4 (Projection/Proximal Models). Suppose that f admits the decomposition

f = g + h,

where g, h : Rd → (−∞,∞] are closed, proper, convex functions. Let x ∈ Rd and suppose
that gx is an (l, q) model of g at x. Then

gx + h

is an (l, q)-model of f at x.

Let us look at another classical algorithm. As before, for every x ∈ Rd define the
subgradient model gx(y) := g(x) + 〈vx, y− x〉 for some vx ∈ ∂g(x). Then based on using the
approximation fx := gx + h, we derive the classical proximal subgradient algorithm: given
x0, . . . , xk, define xk+1 by

xk+1 = argmin
y∈Rd

{
gxk(y) + h(y) +

ρk
2
‖y − xk‖2

}
, (PROX)

for some ρk > 0. Again a bit of algebra shows every step of this algorithm admits a “closed
form” solution (check!)

xk+1 = prox(1/ρk)h

(
xk −

1

ρk
vxk

)
,

where for any γ > 0, we define the proximal operator of h with parameter γ:

proxγh(z) := argmin
y∈Rd

{
h(y) +

1

2γ
‖y − z‖2

}
, ∀z ∈ Rd.

As was the case for the projected subgradient method, the formula is not truly “closed
form” unless computing the proximal operator is “simple enough.” Nevertheless for a variety
of important convex functions h, there is a closed form solution to the proximal operation.
To support this claim, we will give a few examples in the exercises.

58

Max-linear Models. Suppose that we wish to optimize a convex function f , given in the
explicit form

f(x) = max{f1(x), f2(x)},
where f1 : Rd → R and f2 : Rd → R are convex and differentiable. Let us consider two
natural models for f :

1. fx(y) = f(x) + 〈vx, y − x〉 for any vx ∈ ∂f(x).

This is the standard linear model built from subgradients. Notice that this model treats f
as a “black box,” ignoring the structure of f1 and f2. In contrast, the following alternative
max-linear model

2. fx(y) = max{f1(x) + 〈∇f1(x), y − x〉, f2(x) + 〈∇f2(x), y − x〉},

is nonlinear and nondifferentiable, but more closely approximates the geometry of f . For
example, Figure 12 shows both models for the function f(x) = {(x + 1)2, (x − 1)2}, and
verifies this claim. The figure also shows that the quadratic penalization strategy in (10.6)
will perform better on the second model.

0.5

f
fx

fx(y) + (y − 1)2

0.5

f
fx

fx(y) + (y − 1)2

Figure 12: Linear model (left) and sublinear prox-linear model (right).

More generally, the following result holds (you will prove this in the exercises).

Proposition 10.5 (Max-Linear Models). Suppose that f admits the decomposition

f = max(f1, . . . , fn),

where for each i, the function fi : Rd → (−∞,∞] is closed, proper, and convex. Let x ∈ Rd

and suppose for each i, the function (fi)x is an (l, q) model of fi at x. Then

max{(f1)x, . . . , (fn)x}

is an (l, q)-model of f at x.

Turning to algorithms, the max-linear strategy gives rise to the following method (some-
times called prox-linear or Gauss-Newton): given x0, . . . , xk, choose (l, q) models of (f1)xk ,
. . . , (fn)xk of f1, . . . , fn at xk, and define xk+1 by

xk+1 = argmin
y∈Rd

{
max{(f1)xk(y), . . . , (fn)xk(y)}+

ρk
2
‖y − xk‖2

}
. (MAXL)

59

We caution the reader that each step of this algorithm might be as hard to solve as minimizing
f itself (for example, consider again the example max{(1+x)2, (1−x)2}). Nevertheless, when
it is possible to implement this strategy, one should prefer it over the naive subgradient
method. Indeed, in general the linear model built from subgradients is at best linearly
accurate. On the other hand, if one knows the fi have simple quadratically accurate models,
then the max-linear model is quadratically accurate, resulting in improved complexity rates,
as we will soon see.

10.1.3 Two Small Examples

We now illustrate that a close look at problem structure can lead to algorithms that perform
much better than those built from classical linear models. We illustrate this claim on two
problems: the first, called least absolute shrinkage and selection operator (LASSO), is a
common tool in statistical regression; the second is the minimization of the maximum of two
quadratics, which serves as a prototypical example of a nonsmooth, non polyhedral convex
function.

In Figure 13a, we compare the performance of the subgradient, clipped subgradient, and
proximal gradient methods for the following LASSO problem:

minimizex∈Rd f(x) :=
1

2
‖Ax− b‖2 + λ‖x‖1.

where d = 20, m = 10, A ∈ Rm×d, b ∈ Rm, and λ is a small constant. The updates of the
three algorithms are summarized below:

Iteration k
100 101 102 103 104 105

f
(x

k
)
!

in
f
f

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

subgradient
clipping
proximal gradient

(a) LASSO

Iteration k
100 101 102 103 104 105

f
(x

k
)
!

in
f
f

10-12

10-10

10-8

10-6

10-4

10-2

100

102

subgradient
max linear

(b) Maximum of Quadratics

Figure 13: Convergence Plots for the Problems in Section 10.1.3

1. Subgradient. For every iterate xk, we compute a subgradient18vxk = AT (Axk − b) +
λsign(xk) ∈ ∂f(xk) (check!) and then set

xk+1 = xk −
1

ρk
vxk .

18Here, we let sign(x) = (sign(x1), . . . , sign(xd)), with the convention that sign(0) = 0.

60

2. Clipped. For every iterate xk, we compute a subgradient vxk = AT (Axk − b) +
λsign(xk) ∈ ∂f(xk) and then set

xk+1 = argmin
y∈Rd

{
max{f(xk) + 〈vxk , y − xk〉, inf f}+

ρk
2
‖y − xk‖2

}
3. Proximal Gradient. For every iterate xk, we compute a gradient wxk = AT (Ax− b)

of the smooth function g(x) = 1
2
‖Ax− b‖2 and then set

xk+1 = argmin
y∈Rd

{
g(xk) + 〈wxk , y − xk〉+ λ‖y‖1 +

ρk
2
‖y − xk‖2

}
.

We do not specify the control parameters ρk, but let us mention that they were tuned
appropriately. At first glance, the subproblems may seem to be increasing in complexity.
This is actually not the case since all have equally simple, closed form solutions. Indeed,
the solution to the clipped problem may be gleaned from (10.7). Likewise, we will show
in the exercises that the proximal gradient step for the `1 norm also has a simple closed
form formula. Looking at Figure 13a, we conclude that “better models” lead to “faster
algorithms,” at least in this example.

Let us consider a second example. In Figure 13b, we compare the performance of sub-
gradient and max-linear models for the following maximum of quadratics problem:

minimizex∈Rd f(x) := max

{
1

2
〈A1x, x〉+ 〈b1, x〉,

1

2
〈A2x, x〉+ 〈b2, x〉

}
where d = 20, A1, A2 ∈ Rd×d, and b1, b2 ∈ Rd. The updates of the two algorithms are
summarized below:

1. Subgradient. For every iterate xk, we compute a subgradient vxk = AT (Axk − b) +
λsign(xk) ∈ ∂f(xk) (check!) and then set

xk+1 = xk −
1

ρk
vxk .

2. Max-linear. For every iterate xk, we compute a subgradient ∇fi(xk) = Aixk− bi and
of the quadratics fi(x) = 1

2
〈Aix, x〉+ 〈bi, x〉 and then set.

xk+1 = argmin
y∈Rd

{
max{f1(xk) + 〈∇f1(xk), y − xk〉, f2(xk) + 〈∇f2(xk), y − xk〉}+

ρk
2
‖y − xk‖2

}
.

Again, we mention that ρk was tuned appropriately. In addition, both algorithms have
roughly the same computational cost, since the max-linear algorithm may be implemented
with roughly three times the computational effort of a single subgradient update. Looking
at Figure 13b, we again conclude that “better models” can lead to “faster algorithms.”

Having developed a rich class of models we now turn our attention to a rigorous study
of algorithms. In the next section, we look first at a first algorithm, based on repeatedly
minimizing (10.6).

61

10.2 A First Algorithm

Returning to algorithms, we follow the path outlined in Section 10.1 and repeatedly minimize
quadratically perturbed models of f . We call this a First-Order Model Based Algorithm.
Concretely, we initialize the algorithm at a point x0 ∈ dom(f) and then define a sequence of
iterates x0, x1, . . . inductively: given iterates x0, . . . , xk, we form an (l, q) model fxk of f at
xk and minimize

xk+1 = argmin
y∈Rd

{
fxk(y) +

ρk
2
‖y − xk‖2

}
, (MBA)

where the sequence of scalars ρ0, ρ1, . . . are again called control parameters.
For now we impose minimal assumptions on parameters and models. We only ask the

control parameters to be strictly positive, which ensures the iterates exist (as we will see).
As for the models fxk , they are indexed by xk, but they may depend arbitrarily on the past
iterates x0, . . . , xk. And although we could allow their parameters to vary, we avoid this
complication and instead ask each fxk to be an (l, q) approximation for fixed l ≥ 0 and
q ≥ 0.

Disclaimer: Below we will only provide estimates on algorithm speed in the
two important cases of quadratically accurate models, where l = 0, and linearly
accurate models, where q = 0. While we could now analyze (MBA) for any
pair (l, q), the “correct” control parameters and the rates of convergence change
dramatically, depending on whether l = 0 or l > 0. Thus we only focus on these
two classical cases.

Given this algorithm, a few natural questions arise:

1. (Examples.) How do we choose the models fxk?

2. (Complexity.) How quickly does (MBA) approach a minimizer of f?

3. (Accelerations.) Once we understand its complexity, can we improve upon (MBA)?

In section 10.1, we looked at several classes of models and seen that (MBA) recovers classical
algorithms such as the gradient and subgradient method. Thus in this section, we beginning
with complexity. Afterwards, we will improve upon (MBA) in certain special cases.

10.2.1 Terminology: Iteration Complexity and Rates of Convergence

How quickly does xk approach a minimizer of f? To answer this question we must first
decide how to measure algorithm progress. Two common measures are the objective error
and the distance to minimizers:

1. (The Objective Error.) f(xk)− inf f ;

2. (Distance to Minimizers.19) dist(xk,X ∗).
19For a set X ⊆ Rd and a point x ∈ Rd, we define the distance to X : dist(x,X) := infy∈X ‖y − x‖.

62

Both quantities are nonnegative and take the value zero if and only if xk is a minimizer. The
distance may be expressed more simply with a projection operator: since X ∗ := argmin f is
closed and convex (check!) it holds dist(x,X ∗) = ‖x− projX ∗(x)‖. Although both measures
are evaluated at an iterate xk, we will sometimes evaluate them at auxiliary, but still com-
putable points x̂k created from the past iterates x0, . . . , xk. For example, we may set x̂k to
be an average of x0, . . . , xk.

There are two common ways to discuss the “speed” of an algorithm. When measuring
the convergence rate of the algorithm, we seek to bound either the objective error or the
distance to minimizers by a decreasing function of k. For example, if the function is geomet-
rically decreasing in k, we say the algorithm converges linearly, and if the function decreases
polynomially in k, we say the algorithm converges sublinearly. More concretely, the two
functions fit either form

1. (Linear.) crk for some r ∈ (0, 1);

2. (Sublinear.) c/kp for some p > 0,

for some c > 0. Equivalent to measuring the convergence rate of an algorithm is measuring
its complexity: fixing a measure of progress and a target “accuracy” ε > 0, the iteration
complexity provides a function K(ε) so that the measure is less than ε when k ≥ K(ε).
Clearly, linearly convergent algorithms have complexity bounded by log(c/ε)/ log(1/r), while
a sublinearly convergent algorithm has complexity bounded by (c/ε)1/p. Both the iteration
complexity and the convergence rate count the number of times we minimize a model of f ,
but they ignore the cost of each such minimization.

Going forward we will always be able to measure the convergence rate or iteration com-
plexity of the objective error. In contrast, it is only possible to measure the distance to the
minimizer if f behaves well. For example, we will be able to measure dist(xk,X ∗) if f grows
rapidly away from minimizers:

µ · dist(x,X ∗)p ≤ f(x)− inf f, ∀x ∈ Rd, (10.8)

for some p > 0 and µ > 0. In the exercises, you will look at the case where p = 2.

10.2.2 The Effect of Solving the Quadratically Penalized Subproblem

To understand quadratic penalization, we introduce the class of α-strongly convex functions:
a proper function h : Rd → (−∞,∞] is called α-strongly convex if x 7→ h(x) − α

2
‖x‖2

is convex. We need two properties of strongly convex functions: first they have unique
minimizers and second they grow quadratically away from them. We prove this in the
following lemma.

Lemma 10.6 (Strong Convexity and Quadratic Growth). Let α > 0 and suppose that h is
a closed, proper, and α-strongly convex. Then h has a unique minimizer x̄ and

α

2
‖y − x̄‖2 + h(x̄) ≤ h(y), ∀y ∈ Rd.

63

Proof. Beginning with existence, we show h has a minimizer. This will follow from Weier-
strauss’ Theorem if h has bounded sublevel sets (Exercise 2.5). To show this, we will prove
that a quadratic function of the form c0 + 〈v0, x〉+ ρ

2
‖x‖2 globally lower bounds h, where the

affine part comes from a linear under approximation of the proper, closed, convex function
g(·) := (h(·)− ρ

2
‖ · ‖2). More precisely, since g is proper, closed, and convex, there is a point

x0 ∈ dom(g) with ∂g(x0) 6= ∅ (Exercise 9.11). Choosing any v ∈ ∂g(x0) and any a ∈ R, we
thus have

{x : h(x) ≤ a} =
{
x : g(x) +

ρ

2
‖x‖2 ≤ a

}
⊆
{
x : g(x0) + 〈x− x0, v〉+

ρ

2
‖x‖2 ≤ a

}
.

The right hand side is bounded, implying h has bounded sublevel sets.
Turning to quadratic growth, let x̄ be a minimizer of h. Then by Fermat’s rule and the

sum rule
0 ∈ ∂h(x̄) = ∂g(x̄) + ρx̄ =⇒ −ρx̄ ∈ ∂g(x̄).

Thus, by definition

〈−ρx̄, y − x̄〉+ h(x̄)− ρ

2
‖x̄‖2 ≤ h(y)− ρ

2
‖y‖2, ∀y ∈ Rd.

Completing the square yields quadratic growth and shows x̄ uniquely minimizes h.

For us, the main consequence of this lemma is the next result, showing how f(xk) evolves
in the (MBA) algorithm. It relies on the following observation: h is α-strongly convex if
and only if y 7→ h(y)− α

2
‖y − x‖2 is convex for all x ∈ Rd (check!). As we will later develop

a second algorithm, one also based on repeatedly solving the quadratic subproblem (10.6),
we answer this question more generally in the following Lemma.

Lemma 10.7 (Basic Lemma of (l, q) models). Fix x ∈ Rd and suppose that fx is an (l, q)
model of f at x. Let x+ be the minimize of the following quadratic subproblem:

x+ = argmin
y∈Rd

{
fx(y) +

ρ

2
‖y − x‖2

}
.

Then the following bound holds:{
f(x+) +

ρ

2
‖y − x+‖2

}
+
ρ− q

2
‖x+ − x‖2 − l‖x+ − x‖

≤
{
f(y) +

ρ

2
‖y − x‖2

}
, ∀y ∈ Rd. (10.9)

Proof. Applying Lemma 10.6 to to fx + ρ
2
‖y − x‖2, we find that

ρ

2
‖x+ − y‖2 +

{
fx(x+) +

ρ

2
‖x+ − x‖2

}
≤
{
fx(y) +

ρ

2
‖y − x‖2

}
≤ f(y) +

ρ

2
‖y − x‖2,

where the third inequality follows since fx is an (l, q) model. To complete the proof, use the
(l, q) property again to deduce fx(x+) ≥ f(x+)− l‖x+ − x‖ − q

2
‖x+ − x‖2.

Viewing x+ as one “step” of an algorithm, the this lemma reveals algorithm progress
toward an arbitrary point y ∈ Rd. For example setting ρ ≥ q, l = 0, and y = x, we find
f(x+) ≤ f(x), a useful fact in the next session.

64

10.2.3 Quadratically Accurate Models and Gradient Descent

Applying Lemma 10.7 to the iterates of (MBA), we derive the following rate of convergence.
In the proof, we will see that f(x1), f(x2), . . . is a decreasing sequence, showing that the
iterates make monotonic progress to the minimizers.

Theorem 10.8 (Convergence Rate of (MBA) Quadratically Accurate Models). Suppose
that each fxk is a (0, q) model of f at xk for all k ≥ 0. Let ρ ≥ q and suppose that ρk = ρ
for all k ≥ 0. Then

f(xK)− inf f ≤ ρ · dist2(x0,X ∗)
2K

, ∀K ≥ 1.

Proof. Beginning with the sublinear case, we show f(xk) − inf f is nonincreasing in k. To
show this, we plug y = xk and x = xk in (10.9) and find f(xk+1) ≤ f(xk) for all k ≥ 0, as
desired. Combining with the telescoping upper bound

f(xk)− inf f ≤ ρ

2
‖xk−1 − y‖2 − ρ

2
‖xk − y‖2, ∀k ≥ 1, ∀y ∈ X ∗,

given by (10.9), we see that

f(xK)− inf f ≤ 1

K

K∑
k=1

(f(xk)− inf f) ≤ 1

K

K∑
k=1

(ρ
2
‖xk−1 − y‖2 − ρ

2
‖xk − y‖2

)
≤ ρ · ‖x0 − y‖2

2K
.

Letting y be the projection of x0 onto X ∗, the numerator becomes dist2(y,X ∗), as desired.

Returning to the classical example of the gradient descent algorithm, we have the follow-
ing direct corollary of Theorem 10.8.

Corollary 10.9 (Convergence Rates of Gradient Descent). Suppose that f is differentiable
and that ∇f is q-Lipschitz for some q > 0, meaning

‖∇f(x)−∇f(y)‖ ≤ q‖x− y‖, x, y ∈ Rd.

Let ρ ≥ q and Let x0, x1, . . . be the iterates of the gradient descent algorithm (GD) with
ρk = ρ for all k ≥ 0. Then

f(xK)− inf f ≤ ρ · dist2(x0,X ∗)
2K

, ∀K ≥ 1.

Upper bounding the convergence rate by ε, we recover the classical complexity of the
gradient descent algorithm, as claimed in Equation (10.4):

ρ · dist2(x0,X ∗)
2K

≤ ε ⇐⇒ K ≥ ρ · dist2(x0,X ∗)
2ε

.

We easily derive the same rate of convergence for the aggregated, projected gradient, prox-
imal gradient, and max-linear algorithms as outlined in Section 10.1.2. As an example, we
state the convergence rate of the proximal gradient method.

65

Corollary 10.10 (Convergence Rates of Proximal Gradient Descent). Suppose that f admits
the decomposition

f = g + h,

where g, h : Rd → (−∞,∞] are closed, proper, convex functions. In addition, suppose that
g is differentiable and that ∇g is q-Lipschitz for some q > 0, meaning

‖∇g(x)−∇g(y)‖ ≤ q‖x− y‖, x, y ∈ Rd.

Let ρ ≥ q and Let x0, x1, . . . be the iterates of the proximal gradient algorithm:

xk+1 = argmin
y∈Rd

{
g(xk) + 〈∇g(xk), y − xk〉+ h(y) +

ρ

2
‖y − xk‖2

}
, ∀k ≥ 0.

Then

f(xK)− inf f ≤ ρ · dist2(x0,X ∗)
2K

, ∀K ≥ 1.

10.2.4 Linearly Accurate Models and the Subgradient Method

Moving to the case of linearly accurate models (l > 0), we will see a change not only in
the rates of convergence, but also in the control parameters ρk. For example, we will find
both that (MBA) has worse rates and that to achieve these rates its control parameters
must tend to infinity. To illustrate, we make the simplifying assumption that q = 0. In this
setting, we may refine Lemma 10.7: Fixing a k ≥ 1 and letting δk = ‖xk − xk−1‖, we have

f(xk)− f(y) ≤ ρk−1

2
‖xk−1 − y‖2 − ρk−1

2
‖xk − y‖2 + lδk −

ρk
2
δ2
k, ∀y ∈ Rd

Noticing that h(δ) = lδ − (ρk/2)δ2 is a concave quadratic in δ, we may find its maximizer
from first order optimality conditions: h′(δ) = 0 if and only if δ = l/ρk. Then from h(δk) ≤
h(δ) = l2

2ρk
, we arrive at the following critical inequality:

f(xk)− f(y) ≤ ρk−1

2
‖xk−1 − y‖2 − ρk−1

2
‖xk − y‖2 +

l2

2ρk−1

, ∀y ∈ Rd. (10.10)

Plugging y = xk−1 into this inequality, we see that

f(xk)− f(xk−1) ≤ l2

2ρk−1

− ρk−1

2
‖xk − xk−1‖2,

showing that f(xk) does not necessarily decrease. Moreover, if l2/(2ρk−1) dominates ((ρk−1 +
α)/2)‖xk− xk−1‖2, the reason for increasing ρk−1 becomes clear: if ρk−1 is fixed, the iterates
may oscillate.20

Beyond a change in rates and control parameters, we must also change what (MBA)
returns as an approximate minimizer. The reason is that f(xk) may increase over time, so
last iterate xK may not be the “best” one. In place of the last iterate we may instead return
an average of the iterates or an iterate with minimal objective error. In what follows, we
will return averages rather than the “best” iterate. To that end, we will need the following
easy consequence of convexity (check!).

20In general, one expects ‖xk − xk−1‖ to be less than or perhaps even substantially less than l/ρk−1.

66

Lemma 10.11 (Jensen’s Inequality). Fix K ≥ 1 and let f : Rd → (−∞,∞] be a proper
convex function. Suppose that x1, . . . , xK ∈ dom(f) and λ1, . . . , λn > 0. Then

f

(
1∑K
i=1 λi

K∑
i=1

λixi

)
≤ 1∑K

i=1 λi

K∑
i=1

λif(xi).

With this Lemma and inequality 10.10 in hand, we are ready to derive the convergent
rate of (MBA) for (l, 0) models. In what follows, we refer to the sequence of weighted
averages

xK :=
1∑K

k=1 ρ
−1
k−1

K∑
k=1

ρ−1
k−1xk, ∀K ≥ 1.

It is these points for which we obtain a rate of convergence.

Theorem 10.12 (Convergence Rate of (MBA) with Linearly Accurate Models). Suppose
that each fxk is an (l, 0) model of f at xk for all k ≥ 0. Then

f (xK)− inf f ≤
dist2(x0, argmin f) + l2

∑K
k=1 ρ

−2
k−1

2
∑K

k=1 ρ
−1
k−1

, ∀K ≥ 1. (10.11)

Proof. Letting y be the projection of x0 onto argmin f in (10.10), we find

f(xk)− inf f ≤ ρk−1

2
‖xk−1 − y‖2 − ρk−1

2
‖xk − y‖2 +

l2

2ρk−1

.

Multiplying both sides by ρ−1
k and summing from k = 1 to k = K, we have

k∑
K=1

ρ−1
k−1 (f(xk)− inf f) ≤

K∑
k=1

(
1

2
‖xk−1 − y‖2 − 1

2
‖xk − y‖2 +

l2

2ρ2
k

)

≤ 1

2
‖x0 − y‖2 +

l2

2

K∑
k=1

ρ−2
k−1

Dividing both sides by
∑K

k=1 ρ
−1
k and applying Jensen’s inequality to f , we find

f(xK)− inf f ≤
‖x0 − y‖2 + l2

∑K
k=1 ρ

−2
k−1

2
∑K

k=1 ρ
−1
k−1

.

To complete the proof, note that dist(xk,X ∗) ≤ ‖xk − y‖ and dist(x0,X ∗) = ‖x0 − y‖.

The theorem allows for flexibility in the choice of control parameter ρk. There are two
classical families, common in the literature:

67

1. (Square Summable, but not Summable.) Suppose that

∞∑
k=1

ρ−2
k < +∞ and

∞∑
k=1

ρ−1
k = +∞.

Looking at (10.11), we see this choice guarantees f(x̄K) → f ∗ as K → ∞. Common
practical choices include

ρk = c1k
1
2

+c2

for some positive c1 and c2. These stepsizes must be heavily “tuned” to achieve ”good”
performance.

2. (Fixed Time Horizon). When we only wish to run the algorithm for a fixed number
of steps K, we can choose a constant stepsize ρk = C

√
K with C > 0. With this

choice, we get the bound

f (xK)− inf f ≤ C2dist2(x0,X ∗) + l2

2C
√
K

,

yielding a convergence rate on the order of 1/
√
K.

Returning to the classical example of the subgradient method, we have the following
direct corollary of Theorem 10.8.

Corollary 10.13 (Convergence Rates of Subgradient Method). Suppose that f is l̂-Lipschitz
continuous, meaning

|f(x)− f(y)| ≤ l̂‖x− y‖
Let x0, x1, . . . be the iterates of the subgradient method (SM). Then

f (xK)− inf f ≤
dist2(x0,X ∗) + 4l̂2

∑K
k=1 ρ

−2
k−1

2
∑K

k=1 ρ
−1
k−1

, ∀K ≥ 1.

Fixing a K ≥ 0 and choosing the fixed time horizon stepsize

ρk ≡ C
√
K with C :=

2l̂

dist(x0,X ∗)
,

yields the convergence rate

f (xK)− inf f ≤ 2 · dist(x0,X ∗)l̂√
K

.

Upper bounding the convergence rate by ε, we recover the classical complexity of the sub-
gradient method, as claimed in Equation (10.5):

2 · dist(x0,X ∗)l̂√
K

≤ ε ⇐⇒ K ≥ 4l̂2 · dist2(x0,X ∗)
ε2

.

We easily derive the same rate of convergence for the aggregated, projected subgradient,
proximal subgradient, and max-linear algorithms as outlined in Section 10.1.2. As an exam-
ple, we state the convergence rate of the proximal subgradient method.

68

Corollary 10.14 (Convergence Rates of Proximal Subgradient). Suppose that f admits the
decomposition

f = g + h,

where g, h : Rd → (−∞,∞] are closed, proper, convex functions. In addition, suppose that
g is l̂-Lipschitz continuous, meaning

|g(x)− g(y)| ≤ l̂‖x− y‖, x, y ∈ Rd.

Let x0, x1, . . . be the iterates of the proximal subgradient method:

Choose: vk ∈ ∂g(xk)

Set: xk+1 = argmin
y∈Rd

{
g(xk) + 〈vk, y − xk〉+ h(y) +

ρ

2
‖y − xk‖2

}
, ∀k ≥ 0.

Then

f (xK)− inf f ≤
dist2(x0,X ∗) + 4l̂2

∑K
k=1 ρ

−2
k−1

2
∑K

k=1 ρ
−1
k−1

, ∀K ≥ 1.

10.3 An Acceleration for Quadratically Accurate Models

In our study of the model-based algorithm (MBA), we have found a sharp division in
complexity, one that favors quadratic accuracy over linear accuracy. Later we will look
closely at linearly accurate models and show that the performance of (MBA) in some sense
matches the best possible complexity for any algorithm based on minimizing such models. On
the other hand, for quadratically accurate models, there is still much room for improvement,
as Yuri Nesterov found in 1983 with his so called accelerated gradient method [?].

To illustrate, let us consider the special case where f is Fréchet differentiable and ∇f
is q-Lipschitz. Then for a certain sequence of parameters γk ≥ 0, Nesterov’s accelerated
method is given by the following recursion:

xk+1 = yk −
1

q
∇f(yk)

yk+1 = xk+1 + γk(xk+1 − xk).

Recalling the classical gradient method (GD), we see the primary difference is the introduc-
tion of a new sequence of iterates yk. Nesterov’s algorithm is interpreted as a gradient step
with a bit of “momentum” added, a term reserved for the differences γk(yk+1 − yk).

Nesterov’s result states that the complexity of the accelerated gradient method (with
properly chosen γk) is bounded by

K(ε) ≤

⌈
dist(x0,X ∗)

√
2q

ε

⌉
.

Comparing to the complexity bound of gradient descent in (10.4), we see a huge improvement
in terms of dependence on ε. Moreover, in terms of any “reasonable” algorithm based on

69

first-order information about f , this complexity is optimal (as shown by Nemirovski and
Yudin [?]).

The goal of this section is to give a similar improvement for the entire class of quadratically
accurate models. To do so, we introduce an “accelerated” version of (MBA), one that was
first proposed and analyzed in an influential 2008 paper of Paul Tseng [?]. Concretely, we
initialize the algorithm at a pair of points x0, z0 ∈ dom(f) and then define two sequences of
iterates: given iterates x0, . . . , xk and z0, . . . , zk, we form a q-quadratically accurate model
fxk of f at xk and set

θk =
2

k + 1
;

yk = (1− θk)xk + θkzk;

zk+1 = argmin
y∈Rd

{
fyk(y) +

θkq

2
‖y − zk‖2

}
;

xk+1 = (1− θk)xk + θkzk+1.

(AMBA)

If you do not have intuition for this algorithm, you are not alone. As of late, a focus of
much research has been to provide an intuitive explanation of accelerated algorithms. The
interested reader should perform a quick internet search on “intuition for accelerated gradient
methods,” and read some of the “intuitive” explanations. You can judge for yourself how
intuitive they really are.

The proof of acceleration for this algorithm follows two steps. First, we establish the
following recursion, showing how the objective error evolves over time.

Proposition 10.15. For any k ≥ 0 and y ∈ X ∗, we have the following bound:

1− θk+1

θ2
k+1

(f(xk+1)− inf f) +
q

2
‖y − zk+1‖2 ≤ 1− θk

θ2
k

(f(xk)− inf f) +
q

2
‖y − zk‖2. (10.12)

This proposition is slightly cryptic, so let us defer its proof until Section 10.15 and instead
look at its consequences. The following theorem shows shows that (AMBA) achieves the
desired 1/

√
ε complexity for the entire class of quadratically accurate models.

Theorem 10.16. For every k ≥ 0, it holds that

f(xk)− inf f ≤ 6q · dist2(z0,X ∗)
(k + 2)2

.

Proof. Theorem 10.15 shows the sequence 1−θk+1

θ2k+1
(f(xk+1) − inf f) + q

2
‖y − zk+1‖2 is nonin-

creasing. Therefore, we see that

1− θk
θ2
k

(f(xk)− inf f) ≤ 1− θ0

θ2
0

(f(x0)− inf f) +
q

2
‖y − z0‖2 =

q

2
‖y − z0‖2,

since θ0 = 1. To complete the proof choose y = projX ∗(z0), divide both sides of the equation

by 1−θk
θ2k

, and use the bound:
θ2k

1−θk
≤ 12

(k+2)2
.

70

10.3.1 Proof of Proposition 10.15

We first upper bound f(xk+1), using the quadratic accuracy of fyk :

f(xk+1) ≤ fyk(xk+1) +
q

2
‖xk+1 − yk‖2

= fyk((1− θk)xk + θkzk+1) +
q

2
‖(1− θk)xk + θkzk+1 − yk‖2.

Next we simplify the expression in the norm to

(1− θk)xk + θkzk+1 − yk = (1− θk)xk + θkzk+1 − ((1− θk)xk + θkzk) = θk(zk+1 − zk).

Using this simplification and the convexity of fyk , we thus have

f(xk+1) ≤ fyk((1− θk)xk + θkzk+1) +
q

2
‖(1− θk)xk + θkzk+1 − yk‖2

≤ (1− θk)fyk(xk) + θkfyk(zk+1) +
qθ2

k

2
‖zk+1 − zk‖2

≤ (1− θk)f(xk) + θk

(
fyk(zk+1) +

qθk
2
‖zk+1 − zk‖2

)
,

where the last line uses fyk(xk) ≤ f(xk). Our aim is to simplify the term in parenthesis.
To that end, we recall that zk+1 is the minimizer of the qθk-strongly convex function

z 7→ fyk(z)+ qθk
2
‖z−zk‖2. Thus, by by the quadratic growth property in (10.6), we find that

qθk
2
‖y− zk+1‖2 +

{
fyk(zk+1) +

qθk
2
‖zk+1 − zk‖2

}
≤
{
fyk(y) +

qθk
2
‖y − zk‖2

}
, ∀y ∈ Rd.

Evaluating the above quadratic growth bound at any y ∈ X ∗, we find that

f(xk+1) ≤ (1− θk)f(xk) + θk

(
fyk(zk+1) +

qθk
2
‖zk+1 − zk‖2

)
≤ (1− θk)f(xk) + θk

(
fyk(y) +

qθk
2
‖y − zk‖2 − qθk

2
‖y − zk+1‖2

)
≤ (1− θk)f(xk) + θk

(
inf f +

qθk
2
‖y − zk‖2 − qθk

2
‖y − zk+1‖2

)
,

where the last line uses fyk(y) ≤ f(y) = inf f . To conclude, subtract inf f from both sides
and divide by θ2

k:

1

θ2
k

(f(xk+1)− inf f) +
q

2
‖y − zk+1‖2 ≤ 1− θk

θ2
k

(f(xk)− inf f) +
q

2
‖y − zk‖2,

The proof is completed by using the lower bound: 1−θk+1

θ2k+1
≤ 1

θ2k
.

71

10.4 Lower Complexity Bounds

What is a “reasonable” algorithm and how might we lower bound such an algorithm’s com-
plexity? To gain some intuition, let us look at the subgradient method (SM). Expanding
its recursion at an iteration k � d, we see every iterate lies in a shift of a “small” subspace:

xk+1 = xk −
1

ρk
vk = x0 −

k∑
i=0

1

ρi
vi ∈ x0 + span{v0, . . . , vk}.

Without loss of generality, let us fix the initial iterate x0 = 0. Then we see that the
subgradient method is one example of a broader class of conceptual algorithms, having the
following property: given iterates x0, . . . , xk

1. an adversary chooses an arbitrary subgradient vk ∈ ∂f(xk);

2. the algorithm may then choose the next iterate in

xk+1 ∈ span{v0, . . . , vk}.

While the subgradient method selects xk+1 =
∑k

i=0
1
ρi
vi, conceptual algorithms allow the

optimizer to choose xk+1 arbitrarily. For example, the optimizer may choose xk+1 to be the
minimizer of f over the subspace span{v0, . . . , vk}. Thus, the conceptual algorithm “should”
perform at least as well the subgradient method. On the other hand,

the algorithm has no control over the choice of subgradients vk.

Instead, subgradients are simply presented to the algorithm, and the adversary is free to
choose the “worst-possible” ones.

Our goal in this section is to understand the worst case behavior of any conceptual
algorithm. To understand this behavior we will introduce a single “worst-case” function,
one that causes trouble for any such method. To gain some intuition for how we might
do this, recall that the subgradient vk may be chosen arbitrarily by an adversary. If the
adversary chooses subgradients so that span{v0, . . . , vk} is far from X ∗, then we expect such
algorithms to perform poorly. To lower bound complexity we thus search for a function
whose subgradients can reveal little about its minimizers.

For example fix K < d and consider the function

f(x) := max
i≤K+1

{x(i)}+
1

2
‖x‖2 ∀x ∈ Rd,

We seek a particular choice of subgradients v0, . . . , vk ensuring f(xk) remains large relative
to inf f . To achieve this goal, we must first compute both the subdifferential of f and its
optimal value inf f . For the first task, we define I(x) = {i ≤ K + 1: xi = maxj≤K+1{xj}}
and compute

∂f(x) = conv{ei : i ∈ I(x)}+ x, ∀x ∈ Rd,

where e1, . . . , ed are the canonical basis of Rd. In what follows, we will be interested in a
particular subgradient v(x) ∈ ∂f(x):

v(x) := emin I(x) + x.

72

For the second task, we directly check that the point

x∗ =

− 1

K + 1
, . . . ,− 1

K + 1︸ ︷︷ ︸
K + 1 times

, 0, . . . 0


satisfies 0 ∈ ∂f(x∗). Thus x∗ is optimal and

inf f = f(x∗) = − 1

K + 1
+

1

2
‖x∗‖2 = − 1

2(K + 1)
.

Thus it remains to check the performance of the conceptual algorithm. We do so in the
following proposition. (The reader should compare the bound in Proposition to the classical
complexity bound for the subgradient method (10.5).)

Proposition 10.17 (Lower Complexity of “Subgradient Methods”). There exists a choice
of subgradients v0, v1, . . . , vK so that for all k ≤ K, we have

min
i≤K

f(xi)− f ∗ ≥
dist(x0,X ∗)
2
√
K + 1

.

Proof. Before choosing the subgradients, we note that x∗ is the unique minimizer of f (strong
convexity) and conclude that

dist(x0,X ∗) = ‖0− x∗‖ =
1√

K + 1
.

Therefore, we can revise the desired bound to

min
i≤K

f(xi)− f ∗ ≥
1

2(K + 1)
.

Since f ∗ = 1
2(K+1)

, it suffices to choose v0, . . . , vK so that f(xk) ≥ 0 for all k ≤ K. We

will prove something stronger, namely, we will show that xk ∈ span{e1, . . . , ek}, yielding
f(xk) = 0 + 1

2
‖xk‖2 ≥ 0, as desired.

To that end choose vi = v(xi) ∈ ∂f(xi). We claim that for all k ≤ K, it holds that
both xk and vk−1 are contained in span{e1, . . . , ek}. Let us begin with k = 1. In this case,
v(x0) = v(0) = e1 + 0 = e1, so

x1 ∈ span(v(x0)) = span(e1).

Next suppose that k + 1 ≤ K and the inclusions hold:

xi ∈ span{e0, . . . , ei} and v(xi−1) ∈ span{e1, . . . , ei}, ∀i ≤ k.

Then, since min I(xk) ≤ k + 1 (check!), it holds that

v(xk) = emin I(xk) + xk ∈ span{e0, . . . , ek+1},

and consequently,

xk+1 ∈ span{v(x0), . . . , v(xk)} ⊆ span{e1, . . . , ek+1}.

Therefore, the claim follows by induction.

73

An important feature of the above bound is it is valid only for a fixed dimension d and
a fixed starting point x0 = 0. This is not by accident: if we allow our bounds to depend on
the dimension, we can no longer lower bound mini≤k f(xi) − inf f by a polynomial in 1/k.
The interested reader should consult Chapter 2 in Bubeck’s excellent book [?]. In Chapter
3 of Bubeck’s book, you will also find lower complexity bounds for smooth minimization
methods, showing Nesterov’s accelerated gradient method from Section 10.3 is “optimal.”

10.5 Stochastic Methods

It is common in statistics and machine learning to encounter problems of the form

minimizex∈Rd f(x) =
1

m

m∑
i=1

fi(x),

where m is large. For example each term may take the form

fi(x) = gi(x, (ai, bi)),

where ai is a training datum, bi is the label of ai, the vector x ∈ Rd encodes a classifier, and
the loss gi penalizes misclassification of ai by x, i.e., it encourages x(ai) = bi, if we interpret
x as a mapping from a-space to b-space.21 Much research in modern machine learning is
devoted to such problems, but there the losses fi often lack convexity. When the loss is
nonconvex, we cannot expect to minimize it, and the focus of current research is to quickly
find a “critical” point: ∇f(x) = 0. Nevertheless, whether the loss is convex or nonconvex
the algorithm of choice is the following stochastic gradient method (SGM):22

Sample: ik uniformly from {1, . . . ,m}
Update: xk+1 = xk − αk∇fik(xk).

for a deterministic sequence α0, α1, . . . of “stepsizes,” determined before running the algo-
rithm. To gain some intuition on why this algorithm works, we take the expectation of xk+1

over the randomness in the kth iteration

E [xk+1 | x0, . . . , xk] = xk − αk
1

m

m∑
i=1

∇fi(xk).

This shows the algorithm is an unbiased estimator of the classical (nonstochastic) gradient
method:

xk+1 = xk − αk
1

m

m∑
i=1

∇fi(xk).

It also illustrates the large computational savings afforded by SGM, since the stochastic
method computes just a single gradient ∇fik(xk) per iteration.

Perhaps the biggest mystery in machine learning is why SGM performs so well in practice,
for example, SGM often finds global minima of highly nonconvex and nonsmooth problems

21For example, x could encode the “weights” of a neural network.
22It is even a standard option in the industry backed solvers Facebook’s PyTorch and Google’s Tensorflow.

74

(e.g., ReLU neural networks). When f is nonconvex, little theory is known. A particularly
challenging case is when f lacks smoothness and convexity; the interested reader should
consult my website for recent progress on this front.

In contrast, when f is convex, there is an extensive supporting theory, originating from
the pioneering 1951 work of Robbins and Monro [?]. This work has a counterintuitive
conclusion:

the complexity of the stochastic gradient algorithm does not scale with m.

In fact one can prove similar complexity guarantees even in the “infinite sum” case, where

f(x) = Ez∼P [f(x, z)] .

Here, z encodes “population” data, assumed to follow a fixed but unknown probability
distribution P , and for each z, the loss f(·, z) : Rd → R is convex. While P is unknown, we
assume that we can sample from it. In this setting, the stochastic gradient method takes
the form

Sample: zk ∼ P

Update: xk+1 = xk − αk∇xf(xk, zk).

Although the stochastic gradient method sees only the “training” sample f(·, z1), . . . , f(·, zk),
the algorithm minimizes the expectation f(x), as if it had truly seen infinitely many samples.
In machine learning, this fact is summarized:

The stochastic gradient method minimizes the testing error.

Underlying this result is a crucial assumption: the data z1, . . . , zk are i.i.d., meaning each
sample is touched just once.

Since these properties seem almost magical, the reader may wonder whether there is
a catch? If there were no difference between the iteration complexity of stochastic and
deterministic gradients method, then one would always choose a stochastic method. A
quick experiment, however, shows the “vanilla” stochastic gradient method performs worse
than the gradient method (see Figure 14.) Later, we will provide some formal evidence to
illuminate this behavior. For now we mention that more “practical” variants of the stochastic
gradient method abound, for example, variants that use “adaptive stepsizes” αk, leverage
second order information, or incorporate algorithm history or “minibatches” of gradients
to “reduce the variance” of “gradient estimators;” a quick internet search will reveal much
work in this vein, so we will not dwell on it here. Instead for simplicity, we will focus on the
“vanilla” method, providing a useful stepping stone for further study.

Keeping in line with our earlier focus on models, we will analyze a stochastic variant
of (MBA). To make (MBA) stochastic, we make an analogy with the stochastic gradient
method. For this classical method, each new iterate is the unique minimizer of

xk+1 = argmin
y∈Rd

{
fik(x) + 〈∇fik(x), y − x〉+

1

2αk
‖y − xk‖2

}
.

75

Iteration k #104
0 2 4 6 8 10

f
(x

k
)
!

in
f
f

10-20

10-15

10-10

10-5

100

105

gradient
stochastic gradient

Figure 14: (Stochastic) Gradient Methods on a Least Squares Problem: f(x) =
1

2m

∑m
i=1(aTi x− bi)2.

Thus the stochastic gradient method doubly approximates f at every step: First it builds
the linear model-based approximation: fxk(y) = 1

m

∑m
i=1(fi(xk)+ 〈∇fi(xk), y−xk〉). Then it

minimizes a stochastic approximation of the model: (fik)xk(y) = fik(xk)+ 〈∇fik(xk), y−xk〉.
Viewing the stochastic gradient method through this lens, we see there is a clear stochastic
generalization of (MBA).

Namely, assume the following holds:

Assumption A (Stochastic Model-Based Algorithm Assumptions).

1. (Convexity.) The functions f1, . . . , fm are closed, proper, and convex.
2. (Common Domain.) All terms have the same domain: dom(f) = dom(f1) = . . . =

dom(fm).
3. (Lipschitz Continuity.) The functions f1, . . . , fn are l-Lipschitz continuous on their

domains.
4. (Linearly Accurate Models.) At every x ∈ dom(f) and for every i = 1, . . .m, the

function (fi)x : Rd → (−∞,∞] is an l-linearly accurate model of fi at x:

(fi)x(y) ≤ fi(y) ≤ (fi)x(y) + l‖y − x‖, ∀y ∈ Rd.

With these assumptions in hand, we introduce the stochastic model-based algorithm:
given x0, . . . , xk, define the next iterate by

Sample: ik uniformly from {1, . . . ,m}

Update: xk+1 = argmin
y∈Rd

{
(fik)xk(y) +

ρk
2
‖y − xk‖2

}
, (SMBA)

for a deterministic sequence of control parameters ρ0, ρ1, . . ., meaning one choses all param-
eters before the algorithm begins.

Let us comment on Assumption A. Part 1 reflects our focus on convex optimization.
Part 2 ensures f(xk) < +∞ for every iterate of (SMBA). Without this assumption could

76

not prove complexity bounds on the sequence xk. Part 3 asks for Lipschitz continuity of fi
only on dom(f). This allows for infinite valued functions, for example, the term fi could
decompose into a sum fi = gi + δX , where gi is l-Lipschitz and X is closed and convex. Such
Lipschitz assumptions are common in stochastic optimization and can sometimes be relaxed.
Finally, Part 4 asks each model to be “accurate enough.” Recall linearly accurate models
featured in convergence of “subgradient methods,” rather than “gradient methods.”” Thus,
the results we prove below specialize classical results for the stochastic subgradient method.
There, each fi is l-Lipschitz and one builds linear models from subgradients vi,x ∈ ∂f(x),
meaning

(fi)x(y) = f(x) + 〈vi,x, y − x〉, ∀x, y ∈ Rd.

For such problems, the algorithm (SMBA) specializes to:

Sample: ik uniformly from {1, . . . ,m}
Update: xk+1 = xk − αkvik,xk .

This is classical stochastic subgradient method, applicable to nondifferentiable losses. While
we will look only at linearly accurate models, it is possible to give similar guarantees for
quadratically accurate ones. We work with linearly accurate models for reasons of simplicity
and generality.

Departing from classical algorithms, one may use any of the models in Section 10.1.2.
For example, if each fi is simple, a natural model is simply the function itself: (fi)x = fi.
This choice gives us the stochastic proximal algorithm:

Sample: ik uniformly from {1, . . . ,m}

Update: xk+1 = argmin
y∈Rd

{
fik(y) +

ρk
2
‖y − xk‖2

}
,

which in some cases outperforms subgradient methods. For example consider the least ab-
solute deviations problem:

minimizex∈Rd f(x) =
1

m

m∑
i=1

|aTi x− b|

where a1, . . . , am ∈ Rd and we define fi(x) := |aTi x− b|. In the exercises, you will show each
step of the proximal algorithm has a simple closed form solution, computable with O(d)
operations. More importantly the stochastic proximal method dramatically outperforms
the (stochastic) subgradient method, as shown in Figure 15. Despite each method having
the same parameters, the proximal method converges linearly, unlike the deterministic or
stochastic subgradient method. The reason is we chose b ∈ range(A), meaning one can
perfectly fit the data. In machine learning, this is called the “interpolation” phenomenon.
While the proximal method converges linearly for any natural step size it is possible to tune
the stepsizes of the subgradient methods, in a way that leads to linear convergence; for more
information, see my paper [?].

Moving to complexity, we state the following theorem, characterizing the complexity
of (SMBA).

77

Iteration k #104
0 2 4 6 8 10

f
(x

k
)
!

in
f
f

10-15

10-10

10-5

100

105

subgradient
stochastic subgradient
stochastic proximal

Figure 15: (Stochastic) Gradient Methods on a Least Squares Problem: f(x) =
1
m

∑m
i=1 |aTi x− bi|1.

Theorem 10.18. Fix a constant C > 0, a time horizon K ≥ 0, and set ρk ≡ ρ = C
√
K + 1.

Let K∗ be a uniform random variable on the set {0, . . . , K}. Then

E [f(xK∗)− inf f] ≤
1
2
C2dist2(x0,X ∗) + 2l2

C
√
K + 1

Setting C := 2l
dist(x0,X ∗) , we have

E [f(xK∗)− inf f] ≤ 2dist(x0,X ∗)l√
K + 1

Before we prove the theorem, we make a few comments.

1. Similar to the results of Section 10.4, the convergence rate in this bound is the best
possible for any “reasonable algorithm.” This was proved by Nemirovski and Yudin;
see [?] for another proof.

2. The expectation symbol denotes integration with respect to two sources of randomness:
the random gradient index ik and the random iterate choice K∗. In particular, we may
simplify the expectation as follows

E [f(xK∗)− inf f] =
1

K + 1

K∑
k=0

Ei1,...,iK [f(xk)− inf f] .

Thus the theorem states that the average functional error is small. Applying Jensen’s
inequality (Lemma 10.11), we also deduce that the expected functional error at (K +
1)−1

∑K
k=0 xk is small.

3. On the surface, the bound of Theorem 10.18 appears to match the bound of The-
orem 10.12. This counterintuitive conclusion suggests that one should always pre-
fer stochastic algorithms over deterministic ones. Indeed, their convergence rates are

78

nearly the same but the work per iteration of a deterministic method is m times that of
a stochastic one. Here is the catch: while both methods have the same dependence on
K, the problem parameter l can be dramatically different. For example, let x̄ ∈ Rd and
let a1, . . . , am ∼ N(0, Id) be sampled from a Gaussian distribution. For i = 1, . . . ,m,
define fi(x) = |aTi x− aTi x̄|. Then provided m ≥ Ω(d), for each i

the Lip. constant of fi is Ω(
√
d) while the Lip. constant of f is O(1)

with high probability. We will not prove these facts, but we mention that they follow
from standard concentration inequalities for Gaussian vectors. Let us use these com-
putations to compare the complexity of the stochastic and deterministic subgradient
methods, working under the additional assumption that m = O(d). In this case each
algorithm reaches ε accuracy in the following number of iterations:

O

(
d · dist2(x0,X ∗)

ε2

)
stochastic subgradient method

and
O

(
dist2(x0,X ∗)

ε2

)
subgradient method

Taking into account the number of subgradients computed in each iteration, we find
that both methods require at most

O

(
d · dist2(x0,X ∗)

ε2

)
subgradient evaluations to reach an ε accurate solution (in expected objective value).
In short, there is no free lunch.

Turning to the proof, we will see it is a consequence of the next lemma, which the reader
should compare to Lemma 10.9.

Lemma 10.19. For all k ≥ 0, we have

E [f(xk)− inf f] ≤ E
[ρ

2
‖xk − y‖2 − ρ

2
‖xk+1 − y‖2

]
+

2l2

ρ
, ∀y ∈ X ∗.

Proof. We use throughout the proof that f(y) = inf f for all y ∈ X ∗. We will also use the
notation Ek [·] to denote the conditional expectation E [· | x0, x1, . . . , xk], where we condition
on the entire history of the algorithm up until time k. Thus

f(xk)− f(y) = Ek [f(xk)− f(y)] = Ek [fik(xk)− f(y)]

where the second equality follows since ik is uniformly sampled from 1, . . . ,m. Continuing,
we see that

f(xk)− f(y) = Ek [fik(xk)− f(y)]

≤ Ek [fik(xk+1)− f(y) + l‖xk − xk+1‖]
≤ Ek [(fik)xk(xk+1)− f(y) + 2l‖xk − xk+1‖] ,

79

where the first inequality follows from Lipschitz continuity of fi and the second follows
because (fik)xk is l-linearly accurate. We have put ourselves in favorable place, since xk+1 is
the unique minimizer of the ρ-strongly convex function (fik)xk(y)+ ρ

2
‖y−xk‖2. In particular,

quadratic growth away from minimizers implies{
(fik)xk(xk+1) +

ρ

2
‖xk+1 − xk‖2

}
+
ρ

2
‖y − xk‖2 ≤

{
(fik)xk(y) +

ρ

2
‖y − xk+1‖2

}
.

Letting ∆k = ‖y − xk‖2 and δk = ‖xk+1 − xk‖ for all k, we find the inequality

f(xk)− f(y) ≤ Ek [(fik)xk(xk+1)− f(y) + 2l‖xk − xk+1‖]

≤ Ek
[
(fik)xk(y)− f(y) +

ρ

2
∆k −

ρ

2
∆k+1 + 2lδk −

ρ

2
δ2
k

]
.

Two observations simplify this inequality:

1. First, since ik is a uniform random variable, we have Ek [(fik)xk(y)− f(y)] = 0.

2. Second, we have 2lδk − 2lδ2
k ≤ maxδ∈R(2lδ − (ρ/2)δ2) ≤ 2l2

ρ
.

Putting these together, we find

f(xk)− f(y) ≤ Ek
[
(fik)xk(y)− f(y) +

ρ

2
∆k −

ρ

2
∆k+1 + 2lδk −

ρ

2
δ2
k

]
≤ Ek

[ρ
2

∆k −
ρ

2
∆k+1

]
+

2l2

ρ
.

To complete the proof, take expectations of both sides and use the law of total expectations
to simplify E [Ek [·]] = E [·].

We now conclude with the proof of Theorem 10.18.

Proof of Theorem 10.18. We apply the lemma (and the notation of the proof of the lemma)
in a straightforward manner:

E [f(xK∗)− inf f] = E

[
1

K + 1

K∑
k=0

(f(xk)− inf f)

]

≤ E

[
1

K + 1

K∑
k=0

(
ρ

2
∆k −

ρ

2
∆k+1 +

2l2

ρ

)]

≤ E
[ρ

2
∆0

K + 1

]
+

2l2

ρ

=
C2

2
‖x0 − y‖2 + 2l2

C
√
K + 1

.

To complete the proof, choose y = proxX ∗(x0).

80

10.6 Appendix: Proofs of Propositions 10.1 and 10.2

We first prove that the linear models of functions with Lipschitz gradients are quadratically
accurate.

Proof of Proposition 10.1. Fix y ∈ Rd. We first see that the lower bound fx(y) ≤ f(y)
follows since ∇f(x) ∈ ∂f(x) = {∇f(x)}.

Moving to upper bound, we define a path z(t) = (1−t)x+ty and let g(t) = f(z(t)). Since
g(1) = f(y), g(0) = f(x), and g′(s) = 〈∇f(z(t)), ż(t)〉 = 〈∇f(z(t)), y − x〉, the inequality
we wish to to prove is equivalent to

g(1)− g(0)− g′(0) ≤ q

2
‖x− y‖2.

To that end we use the fundamental theorem of calculus to show

g(1)− g(0) =

∫ 1

0

g′(s)ds = g′(0) +

∫ 1

0

(g′(s)− g′(0))ds.

The proof will be complete if we can bound the integral by q
2
‖x− y‖2. We prove this bound

in two steps. First we upper bound the integrand:

|g′(s)− g′(0)| = |〈∇f(z(s))−∇f(z(0)), y − x〉|
≤ ‖∇f((1− s)x+ sy)−∇f(0)‖‖y − x‖
≤ qs‖x− y‖2, ∀s ∈ [0, 1],

Then we integrate the upper bound on the integrand:∫ 1

0

(g′(s)− g′(0))ds ≤ q‖x− y‖2 ·
∫ 1

0

sds ≤ q

2
‖x− y‖2.

This completes the proof.

Next we show that the linear models of Lipschitz continuous functions are linearly accu-
rate.

Proof of Proposition 10.2. Fix y ∈ Rd. We first see that the lower bound fx(y) ≤ f(y)
follows since vx ∈ ∂f(x).

Moving to the upper bound, we recall a useful fact from Exercise 9.9: the subgradients
of f are bounded, namely ‖vx‖ ≤ l̂ holds. In particular, we have |〈vx, y − x〉| ≤ l̂‖y − x‖.
Using this bound and Lipschitz continuity, we find that

f(y) ≤ f(x) + l̂‖x− y‖
≤ f(x) + 〈vx, y − x〉 − |〈vx, y − x〉|+ l̂‖x− y‖
≤ fx(y) + 2l̂‖x− y‖,

completing the proof.

81

10.7 Exercises

Exercise 10.1 (Descent Directions).

1. Suppose that f is Fréchet differentiable on Rd and that ∇f(x) is a continuous function
of x. Show that for all x ∈ Rd with ∇f(x) 6= 0, there exists γ > 0 such that

f(x− γ∇f(x)) < f(x).

(Hint: Consider the derivative of the one variable function g(γ) = f(x− γ∇f(x)).)

2. Consider a convex function f(x, y) = a|x| + b|y| for scalars a, b > 0. Find a point
(x0, y0) ∈ R2, coefficients a, b > 0, and a subgradient v ∈ ∂f(x, y) so that

f((x0, y0)− γv) > f(x0, y0) ∀γ > 0.

3. Let f be a continuous convex function. Let x ∈ Rd and suppose that 0 /∈ ∂f(x). In
this exercise, we will show that the minimal norm subgradient of f at x

v := proj∂f(x)(0).

is a descent direction.

(a) Show that
〈w,−v〉 ≤ −‖v‖2 ∀w ∈ ∂f(x).

(b) Next, define the one variable continuous convex function g(γ) = f(x− γv). Show
that

η ∈ ∂g(0) =⇒ η < −‖v‖2.

Can 0 be a minimizer of g?

(c) Show that for all γ < 0, we have g(γ) > g(0).

(d) Use parts (b) and (c) to show that for g(γ) < g(0) for all sufficiently small γ > 0.

Exercise 10.2 (Proofs of Approximation Quality). Prove the following propositions.

1. Clipped/Aggregated Models. Let x ∈ Rd and suppose that fx is an (l, q) model
of f at x. Moreover, assume that g : Rd → (−∞,∞] is closed, proper, convex, and
dominated by f : g(y) ≤ f(y) for all y ∈ Rd. Then

max{fx, g}

is an (l, q)-model of f at x.

2. Projected/Proximal Models. Suppose that f admits the decomposition

f = g + h,

where g, h : Rd → (−∞,∞] are closed, proper, convex functions. Let x ∈ Rd and
suppose that gx is an (l, q) model of g at x. Then

gx + h

is an (l, q)-model of f at x.

82

3. Max-Linear Models. Suppose that f admits the decomposition

f = max(f1, . . . , fn),

where for each i, the function fi : Rd → (−∞,∞] is closed, proper, and convex. Let
x ∈ Rd and suppose for each i, the function (fi)x is an (l, q) model of fi at x. Then

max{(f1)x, . . . , (fn)x}

is an (l, q)-model of f at x.

Exercise 10.3 (Clipping Subproblem). Let a, x ∈ Rd, let lb ∈ R, let ρ > 0, and let b ∈ R.
Prove that the point

x+ = argmin
y∈Rd

{
max{〈a, x〉+ b, lb}+

ρ

2
‖y − x‖2

}
satisfies

x+ = x− clip

(
ρ

‖a‖2
(〈a, x〉+ b− lb)

)
a

ρ
where clip(t) = max{min{t, 1}, 0}.

(Hint: use first order optimality conditions.)

In the the following exercises we study the core algorithmic subproblem in proximal
algorithms. For motivation recall the proximal subgradient method from above. This is
perhaps the most common algorithm one encounters in first-order methods, so you should
at least have a working knowledge of how to implement its steps, when possible. In general
it can be quite hard to implement these steps. Indeed, the subproblem includes as a special
case the projection of a vector onto a convex set, a generally difficult task. Still for a few
useful functions we can implement these steps, even with simple closed form expressions.

Exercise 10.4. Let f : Rd → (−∞,∞] be a closed, proper, convex function. Let γ > 0 and
define the proximal operator proxγf : Rd → Rd:

proxγf (x) = argmin
y∈Rd

{
f(y) +

1

2γ
‖y − x‖2

}
.

1. Prove that for all x ∈ Rd, we have

x+ = proxγf (x) ⇐⇒ (x− x+) ∈ γ∂f(x+)

(Hint: use strong convexity.)

2. Prove that x ∈ Rd is minimizes f if and only if x = proxγf (x).

3. (Minty’s Theorem.) Prove that

range(I + ∂f) = {x+ v : v ∈ ∂f(x)} = Rd.

(Hint: use part (a).)

83

4. Prove that proxγf is 1-Lipschitz, i.e.,

‖proxγf (x)− proxγf (y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rd.

(Hint: use strong convexity.)

Notice the relation between proximal and projection operators: If f(x) = δX for a closed
convex set X , then proxγf = projX for all γ > 0.

Exercise 10.5 (Calculus of Proximal Operators.).

1. (Linear Perturbation.) Suppose that f : Rd → (−∞,∞] is closed, proper, and
convex, let γ > 0, and let b, v ∈ Rd. Define a function

g(x) = f(x+ b) + vTx, ∀x ∈ Rd

Prove that
proxγg(x) = proxγf (x− γv + b)− b, ∀x ∈ Rd

(Hint: First try the cases where b = 0 or v = 0.)

2. (Separability.) Let d = d1 + . . . + dn for integers di and let fi : Rdi → (−∞,+∞]
be proper convex functions. Let γ > 0 and for all x = (x1, . . . , xn) ∈ Rd, define
f(x1, . . . , xn) :=

∑n
i=1 f(xi). Prove that

proxγf (x1, . . . , xn) = (proxγf (x1), . . . , proxγfn(xn)), ∀x ∈ Rd.

3. (Scalarization.) Let f : R → (−∞,∞] be a scalar function, let γ > 0, and let
a ∈ Rd\{0}. Define

g(x) = f(aTx), ∀x ∈ Rd

Prove that for all x ∈ Rd, we have

proxγg(x) = x− ρa where ρ =
1

‖a‖2
(aTx− prox(γ‖a‖2)f (a

Tx)).

(Hint: Be careful: the chain rule ∂g(y) = a∂f(aTy) may not hold. Instead, use the
inclusion a∂f(aTy) ⊆ ∂g(y).)

Exercise 10.6 (Proximal Operator Examples.). Compute the proximal operators of
the following functions

1. f(x) := ‖x‖1 =
∑d

i=1 |xi|.

2. f(x) = max{0, x} for a scalar variable x ∈ R.

3. f(x) = 1
2
〈Ax, x〉 − 〈b, x〉, where b ∈ Rd and A ∈ Rd×d is a symmetric positive semidef-

inite matrix.

4. f(x) = ‖x‖2.
(Hint: First compute the subdifferential of f , keeping in mind that f is differentiable
everywhere except the origin.)

84

5. f(x) = δX , where X = {x ∈ Rd : x ≥ 0} is the nonnegative orthant.

6. f(x) = δX , where X = {x : Ax = b} is an affine space defined by matrix A ∈ Rm×d

and b ∈ Rm.

7. f(x) = δX , where X = {x : ‖x‖∞ ≤ 1}
(Hint: You already computed ∂f(x) on a previous homework assignment.)

Exercise 10.7 ((Projection onto Sd×d+).). Recall that any symmetric matrix A ∈ Sd×d
(not necessarily positive semidefinite) has an eigenvalue decomposition

A = QΛQT where


QTQ = I

Λ = diag(λ1, . . . , λd)

λ1 ≥ . . . ≥ λd.

 .

For any such matrix, prove that

projSd×d
+

(A) = Qmax{Λ, 0}QT .

(Hint: Verify the first order optimality conditions A− projSd×d
+

(A) ∈ NSd×d
+

(projSd×d
+

(A)))

85

	This Course
	Prerequisites
	Prior course website
	Acknowledgements

	What is Optimization?
	A Mathematical Program
	Fundamental Structures: Linearity and Convexity
	Aside: Ubiquity of Linear Objectives

	Basic Consequences of Convexity
	Exercises

	First-Order Optimality and Normal Cones
	Differentiability and the Gradient
	Normal Cones and First-Order Optimality: A First Look
	Exercises

	Start of Duality: Projections and Hahn-Banach
	Projections: Existence, Uniqueness, and Characterization
	Hahn-Banach: The Separating Hyperplane Theorem
	Exercises

	Conic Programs
	Cones
	Cones of Particular Significance

	Conic Optimization Problems
	The Primal Conic Problem

	The Conical Form of a Convex Program
	Exercises

	Farkas' Lemma
	Dual Cones
	A Corollary to Hahn-Banach and Farkas Lemma
	Exercises

	Strong Duality
	Linear Programs
	Asymptotic Strong Duality
	Exercises

	Sensitivity: The Basics
	The Fréchet Subdifferential
	Subgradients and Dual Solutions
	Exercises

	Subgradients: Existence, Optimality, and Calculus
	Existence of Subgradients
	The Optimality Conditions of Conic Programming
	Optimality Conditions in General
	Calculus
	Exercises

	First-Order Models and Algorithms
	From Global to Local Models
	Linear Models: Gradient Descent and the Subgradient Method
	Beyond Linear: Clipped, Aggregated, Projected, Proximal, and Max-linear Models
	Two Small Examples

	A First Algorithm
	Terminology: Iteration Complexity and Rates of Convergence
	The Effect of Solving the Quadratically Penalized Subproblem
	Quadratically Accurate Models and Gradient Descent
	Linearly Accurate Models and the Subgradient Method

	An Acceleration for Quadratically Accurate Models
	Proof of Proposition 10.15

	Lower Complexity Bounds
	Stochastic Methods
	Appendix: Proofs of Propositions 10.1 and 10.2
	Exercises

