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1 Linear Algebra Review1

1.1 Independence, Spanning, and Dimension

Definition 1 A (usually infinite) set of vectors S is a vector space if ∀x, y ∈ S, λ ∈ R, (a)
x+ y ∈ S (b) λx ∈ S, and (c) 0 ∈ S.

Definition 2 A set of vectors x1, . . . , xk is said to be linearly dependent if there exists a vector
λ 6= 0 such that

∑k
i=1 λix

i = 0. Otherwise, the set is linearly independent.

Claim 1 If S is linearly dependent and S ⊂ T , then T is also linearly dependent. If some set S is
linearly independent and S ⊃ T , then T is also linearly independent.

Proof: If T = S, we’re done. Otherwise, WLOG T = x1, . . . , xk and S = x1, . . . , xl where
l < k. Since S is linearly dependent, ∃λ 6= 0, λ ∈ Rl such that

∑l
i=1 λix

i = 0. However, letting

λl+1 = · · · = λk = 0 gives
∑k

i=1 λix
i = 0. Thus, T is linearly dependent.

The second statement is just the contrapositive. 2

Definition 3 A set S is said to span a vector space V if all elements of V can be written as linear
combinations of vectors in S.

Definition 4 For a set of vectors T , span(T ) is the set of all vectors that can be expressed as
linear combinations of vectors in T .

Claim 2 For any set T , span(T ) is a vector space.

Proof: 0 is trivially in span(T ). Suppose x and y are linear combinations of vectors in T . Then
x+ y and λx are also linear combinations of vectors in T . Thus, span(T ) is a vector space. 2

Fact 1 span(T ) is the largest vector space that T spans.

Definition 5 A set of linearly independent vectors S is a basis for a subspace V if S ⊂ V and S
spans V .

Example 1 The standard basis for Rn is the set e1, . . . , en where ei is the vector of zeros with 1
in the ith position.

Claim 3 If S = {x1, . . . , xk} is linearly dependent, then ∃j such that xj is a linear combination of
x1, . . . xj−1.

1Based on previous notes of Chaoxu Tong
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Proof: Since S is linearly dependent, ∃λ 6= 0 such that
∑k

i=1 λix
i = 0. Let j be the largest

index such that λj 6= 0. This implies that
∑j

i=1 λix
i = 0. Since λj 6= 0, we can divide and obtain

xj =
∑j−1

i=1 −
λi
λj
xi. Thus, xj is a linear combination of x1, . . . , xj−1. 2

Claim 4 If S, T are linearly independent sets in vector space V , and S a basis for V , with |S| =
n, |T | = k. Then k ≤ n.

Proof: Assume k > n. Since S, T are linearly independent, no vector in S or T is zero. Let
S = {x1, . . . , xn}, T = {y1, . . . , yk}. Since S spans V , y1 is a linear combination of {x1, . . . , xn},
which means the set {y1, x1, . . . , xn} is linearly dependent. By the previous claim, there is some
vector the is a linear combination of the previous vectors. It cannot be y1, so it is some xj . Let S1
be {y1, x1, . . . , xn} with xj removed. Since S spans V and xj is a linear combination of elements
in S1, we have that S1 spans V as well.

Now, consider the set {y2} ∪ S1. Again, this set is linearly dependent since S2 spans V . If we
order the elements of this set {y1, y2, x1, . . . , xn}, we can apply the previous claim again, and we
know that the resulting element must be some xl since {y1, y2} are linearly independent. So let
S2 = S1 ∪ {y2}
{xl}. Again, S2 spans V .

We can continue this process, adding elements of T , always preserving the property that Si
spans V . However, since k > n, we will reach the set Sn = {y1, . . . yn} which spans V . However,
yn+1 is in V , which means that it is a linear combination of {y1, . . . yn}. This is a contradiction
since T is linearly independent. Thus, k ≤ n. 2

Corollary 5 All bases for a vector space V have the same cardinality.

Definition 6 The dimension of V is the size of any basis of V .

1.2 Matrices, Rank, and Invertibility

Definition 7 For a matrix A ∈ Rm×n, the row (column) space of A is the vector space spanned
by its row (column) vectors. A has row (column) rank k if the basis of its row (column) space
has size k.

Claim 6 For any matrix A, the row rank and column rank of A are equal.

Proof: Consider some matrix A ∈ Rm×n. Assume its row rank is k, and that the set {y1, . . . , yk}
is a basis for the row space. Then the ith row ri = (ai1, . . . , ain) can be expressed as

∑k
r=1 λiry

r.

Looking at the jth coordinate of this sum, we have that aij =
∑k

r=1 λiry
r
j . Since this is true

for all j, we have that the jth column cj = (a1j , . . . , anj) can be expressed as
∑k

r=1 y
r
j z
r, where

zr = (λ1r, . . . , λnr). This means that every column of A is a linear combination of k vectors, which
means that the column space can have dimension no larger than k. So column rank of A ≤ row
rank of A.

Applying this argument to the column space gives the other inequality, that row rank of A ≤
column rank of A. Thus, row rank and column rank are the same. 2

Thus we can denote the rank of the column space of A or the rank of the row space of A as
simply the rank of A.
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Fact 2 rank(A) ≤ min{m,n}

Definition 8 (Matrix multiplication) Given matrix A ∈ Rm×r, B ∈ Rr×n, we have that C ∈ Rm×n

is the product of A and B, denoted AB = C if C is the matrix where Cij =
∑r

k=1 aikbkj.

c21 =

 · · · ·
a21 a22 a23 a24
· · · ·




b11 ·
b21 ·
b31 ·
b41 ·


Matrix multiplication is associative and distributive, but not commutative.

Definition 9 A matrix A ∈ Rn×n has inverse B if AB = BA = In, where

In =


1 0 · · · 0
0 1
...

. . .

0 1


A matrix is invertible or nonsingular if it has an inverse. Otherwise it is singular. The

inverse of a matrix A is denoted A−1.

Claim 7 If A ∈ Rn×n has an inverse, it is unique.

Proof: Assume A has inverses B and C. Then consider D = BAC. Associating one way, this
is

D = B(AC) = B(In) = B.

Associating the other way, this is

D = (BA)C = (In)C = C.

This implies that B = C, which implies that the inverse is unique. 2

Fact 3 If AB = In then BA = In.

Claim 8 If A,B invertible, then AB is invertible.

Proof: The inverse of AB is B−1A−1 since

B−1A−1AB = B−1InB = B−1B = In.

2

Claim 9 A matrix A ∈ Rn×n is invertible iff it has rank n.
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Proof: (⇒) Assume A has rank k < n, and inverse A−1. Since it does not have rank n, the
columns of A, a1, . . . , an are dependent. Thus, there is a λ 6= 0 such that

∑n
i=1 λia

i = 0, or in
matrix notation, Aλ = 0. Now consider A−1Aλ. We have (A−1A)λ = Inλ = λ associating one way,
but we also have A−1(Aλ) = A−10 = 0. This is a contradiction since λ 6= 0. Thus, it must be the
case that A has rank n.

(⇐) Assume A has rank n. Then the columns of A span Rn. Thus, we can write any vector in
Rn as a linear combination of the columns of A. Specifically, for any j, we can write ej as some∑n

i=1 λ
j
ia
i. Then if we let matrix

B =

 | |
λ1 . . . λn

| |

 ,

we see that AB = In. Thus, A is invertible. 2

1.3 Solving Systems of Equations

Given matrix A ∈ Rm×n and (column) vector b ∈ Rm, it’s often useful to be able to solve for a
vector x ∈ Rn that satisfies Ax = b. A system of equations can have no solutions, a unique solution
or infinitely many solution.

Fact 4 The system Ax = b has no solution if and only if b is not in the column space of A.

Fact 5 If the system Ax = b has at least one solution, and rank(A)< n, then it has infinitely many
solutions.

Definition 10 A matrix A ∈ Rm×n with m ≤ n is said to have full rank if rank(A) = m.

Claim 10 If A has full rank, then the system Ax = b always has a solution.

Proof: Since A has full rank, it has column rank m, which means we can find m linearly
independent columns of A. WLOG, let those columns be the 1st m columns. Then the matrix B
which consists of those m columns is invertible, and if we left multiply by B−1, we see that the
first m columns of B−1A are the identity matrix. Thus, if y = B−1b, then one solution to Ax = b
is the vector (y1, . . . , ym, 0, . . . 0), since this satisfies B−1Ax = B−1b. 2

So we can sometimes guarantee that a solution to a system of equations exists. But how can
we actually find such a solution?

Example 2 Find solutions to the system Ax = b where

A =

 1 2 3
2 −1 1
3 0 −1

 b =

 9
8
3


In order to determine the set of solutions x, we reduce the problem using elementary row

operations.
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Definition 11 The elementary row operations are:
(1) Scaling a row by some nonzero constant 2 0 0

0 1 0
0 0 1

 1 2 3
2 −1 1
3 0 −1

 =

 2 4 6
2 −1 1
3 0 −1


(2) Interchanging two rows 0 1 0

1 0 0
0 0 1

 1 2 3
2 −1 1
3 0 −1

 =

 2 -1 1
1 2 3
3 0 −1


(3) Adding some multiple of one row to another 1 2 0

0 1 0
0 0 1

 1 2 3
2 −1 1
3 0 −1

 =

 5 0 5
2 −1 1
3 0 −1


Each elementary row operation corresponds to left multiplying by a certain square matrix, known

as an elementary matrix.

Fact 6 All elementary matrices are invertible.

Using this fact, we can apply elementary row operations to our matrix and RHS vector to
simplify the problem. Since elementary matrices are invertible, we preserve the solution set.

Claim 11 Let E be an invertible matrix. Then x satisfies Ax = b iff x satisfies EAx = Eb.

Proof: If Ax = b, left multiplying by E gives EAx = Eb. If EAx = Eb, left multiplying by
E−1 gives Ax = b. 2

Now, we can define the Gauss-Jordan Elimination method for solving systems of equations.
This method involves applying elementary row operations to the matrix and RHS vectors to reduce
the problem to a simpler form.

Example 3 Solve Ax = b for the previously defined A, b.

Start by augmenting the matrix with the RHS vector: 1 2 3 | 9
2 −1 1 | 8
3 0 −1 | 3


Since the first element of the first row is 1, eliminate all entries in the first column under that

element.  1 2 3 | 9
0 −5 −5 | −10
0 −6 −10 | −24


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The second element of the second row is nonzero, but not 1, so scale that row. 1 2 3 | 9
0 1 1 | 2
0 −6 −10 | −24


Eliminate the rest of the second column 1 2 3 | 9

0 1 1 | 2
0 0 −4 | −12


Scale the third row so that its leading nonzero is one. 1 2 3 | 9

0 1 1 | 2
0 0 1 | 3


Eliminate entries above the diagonal 1 0 1 | 5

0 1 1 | 2
0 0 1 | 3


 1 0 0 | 2

0 1 0 | −1
0 0 1 | 3


Thus, the unique solution to the original problem is x = (2,−1, 3). Note that in this example

the leading elements of the rows were not zero, so we could scale them to 1. If one of these elements
was zero, we would either use the interchange operation to swap in a row that had a nonzero
element in that position, or else continue to the next column since the current column had only
zeros in active rows.
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