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Recitation 4

Lecturer: Calvin Wylie Topic: Sergio Palomo

In class, we saw that every bounded polyhedra is a polytope in the set of convex combination
of its vertices. Now we will extend the theory to pointed polyhedra (i.e., those that contain no
lines).!

Definition 1 A polyhedron Q is pointed if there is no y € Q and d # 0 such that for any A € R,
y+AdeQ
Definition 2 Let C' be a nonempty convez set: then the recession cone of C,rec(C), is
{de R" :Vz € C,Va > 0,2+ ad € C}.
Proposition 1 If C is a nonempty set then rec(C) is a nonempty convex cone.

Proof: Let dy,dy € rec(C), A1, A2 > 0. We want to show that Ajd; + \ady € rec(C). For any
z € C and any a > 0

T+ (1(>\1d1 —+ )\ng) = [I‘ + (Oz)q)dl] =+ (Oé)\g)dg.

The quantity in brackets lies in C since aA; > 0 and d; € rec(C), and then the desired vector lies
in C because aA; > 0 and dy € rec(C). Also, 0 € rec(C') by definition. O

Proposition 2 For Q := {y € R™ : Az < b} then (if Q is nonempty)
rec(Q) ={d € R™: Ad < 0}.

Proof:
o
if Ad <0 then for any y € Q,a > 0.
Alx+ad) = Az + aAd
< b+0
= b,
hence (y + ad) € Q.
C:
Suppose d € rec(Q), and choose any y € ). Then Ya > 0
Az +ad) = Azx+ aAd
< ¢
This implies Ar < b
and Ad < 0

otherwise, the above would fail for large «

!Based on previous notes of Chaoxu Tong
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Theorem 3 (Representation of Pointed Polyhedra). Let Q (defined as in Proposition 2) be a
nonempty pointed polyhedron, and let P be the set of all convex combinations of its vertices and K
be its recession cone. Then

Q=P+K:={p+d:pePde K}.

Proof:
o
Any p € P is inside ) and, thus, satisfies all linear constraints of ), so any p+d € P+ K
has
AT(p+d)y=ATp+ATd<c+0=c

C:
The proof is by induction on {m — ra(y)}.

True for {m — ra(y) = 0} < y is itself a vertex of @ and d = 0 € rec(C).
Suppose true if {m — ra(y) < k} for some k > 0 and consider y € Q with ra(y) = m — k < m.
Choose 0 # d € R™ with AZd = 0 (AL are all equality constraints for i) and consider y+ad, o € R.

Since @ is pointed there are three cases to consider.

(1) « is bounded above and below, say by a <0 & @ > 0.
As in the previous theorem

y = 25y tad) + 5(y+ad),

a—a

and (y + @d) has m — ra(y + @d) < k, so

(y+ad) = p + d , peP , deK,
and similarly
(y+ad) = p + d , pecP , deK,
SO
v = FREbt+d + FZHE+d)

FSp+ =27 + {..d+..d}.
The vector in brackets is a point of P and that in braces a point in K.
(2) « is bounded below but not above. Then d € K and y = [y + ad] + (—a)d, with a defined

as before. The vector in brackets lies in P 4+ K as in the first part by the inductive hypothesis.
Therefore

y = @+d+(=

a)d
= p+(d+(-a)d)
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lies in P+ K.
(3) « is bounded above but not below. Then we can simply switch d to —d and @ to —«, and
we get back to case(2).
This completes the proof.
Od

Theorem 4 (Fundamental theorem of LP). Consider the LP problem max{b’y : y € Q} with Q
being a pointed polyhedron. Then

1. if there is a feasible solution, there is a vertex solution (basic feasible solution);

2. if there is a feasible solution and by is unbounded above on Q, then there is a ray or halfline:
{y+ad:a>0}cQ on which by is unbounded above; and

3. if by is bounded above on Q, then the maz is attained and attained at a vertex Q.

Proof:
(1): If Q # 0, P # 0, so there exists a vertex.

(2)& (3):

Assume P # () & P is a set of convex combinations of vy, vy, v3, ..., V.

sup{bTy:y € Q} = sup{bly:ye P+ K}
= sup{b'p+bld:pec Pdc K}
= sup{bTp:pc P} +sup{b’d:dec K}.

If there is some d € K with b'd > 0 then by considering ad , o — 400, see that supide :d €
K} = +00. Then b’y is unbounded above on @ and clearly unbounded above on {y +ad , o > 0}

for any y € Q. B
If there is no such d € K, then sup{b’d : d € K} = 0, attained by d = 0. Then

sup{b’y:y € Q} = sup{b’p:pe P}
= sup{>F A0 )t F A =1, all A; > 0}

T
= mnaxj gigkb V;

In this case sup{b’y : y € Q} is attained by y = v; where 4 attains the maximum.
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