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Uncapacitated Network Flow Problem 1

Suppose we have a directed graph G = (V,E) with n nodes and m arcs. Additionally, there is
a vector b of supplies available at each node (where bi < 0 corresponds to a demand). Finally,
there is a vector of costs c such that for each edge e ∈ E, ce is the cost of sending one unit of flow
along edge e. Assume the graph is connected and

∑
i bi = 0, i.e., the total supply equals the total

demand.
Note that the transportation problem discussed last week can be considered a special case of

problems under this framework. (Set of supply nodes, S = {i ∈ V : bi > 0}, demand nodes
D = V \ S, E = {(i, j) : i ∈ S, j ∈ D}.)

A vector of flows, f ∈ IRm is feasible for this problem if f ≥ 0 and the flow constraints for each
vertex i are satisfied, i.e.: ∑

(i,j)∈E

f(i,j) −
∑

(j,i)∈E

f(j,i) = bi

If we define our matrix A by:

aik =


1 if i is the start node of arc k
−1 if i is the end node of arc k
0 otherwise

then our problem fits into a linear programming framework as:

min cf
s.t.: Af = b

f ≥ 0.

Just like with the transportation problem, it is easy to verify that this matrix is not full rank, but
by deleting one constraint row arbitrarily, it will be full rank assuming the graph is connected.

Circulations and Cycles

Given a feasible solution f , clearly any direction h that maintains feasibility must satisfy Ah = 0.
Directions that satisfy this property are called circulations. Recall that during the transportation
problem, each cycle induced a circulation by choosing each cycle edge to be ±1 appropriately. This
holds for network flow problems as well.

1Based on previous notes of Chaoxu Tong
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Let C be an undirected cycle, in the graph. Let F be the set of forward edges in C and B
the set of backwards edges. Then we can define a circulation hC by:

hCe =


1 e ∈ F
−1 e ∈ B
0 otherwise.

Clearly, this satisfies Ah = 0. Finally, the theorem about basic solution from last week holds in
this setting.
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Claim 1 If f is a basic solution corresponding to basis B, then B has no cycles.

Reduced Costs and Network Simplex

Recall the Simplex method maintains a (usually-infeasible) dual solution to compute the reduced
costs of the primal variables. Consider the dual of the above network problem:

Primal LP:
min cf
s.t.:

∑
(i,j)∈E f(i,j) −

∑
(j,i)∈E f(j,i) = bi ∀i ∈ V

f ≥ 0
Dual LP:
max wb
s.t.: wi − wj ≤ c(i,j) ∀(i, j) ∈ E

So the dual vector is a set of node variables with the property that wi − wj ≤ c(i,j) for each
edge (i, j). Thus, the reduced costs that we consider are

c̄(i,j) = c(i,j) + wj − wi.

Note that we removed the constraint corresponding to node n in the primal to ensure that
A would have full rank. The result is that complementary dual solutions always have wn fixed
arbitrarily. Then, we use the fact that c(i,j) = wj−wi for any edge (i, j) in our basis (complementary
slackness condition) to compute the rest of the w vector.

Recall the general framework of the simplex method:
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1. Start with some basic feasible solution.

2. Compute reduced costs using the complementary dual solution.

3. If the dual is feasible, done. Otherwise, use some negative reduced cost to give a direction of
improvement.

4. Use that direction to move to a new basic feasible solution, or to prove that the objective
function value is unbounded.

In this model, since calculating the dual solution can be done directly without matrix inversion,
we get an enhanced version of the Simplex method by applying the general Simplex principles as
follows:

1. Begin with basic feasible solution f corresponding to tree T .

2. Compute the complementary dual vector w by assigning wn = 0, and using c(i,j)−wi+wj = 0
for edges (i, j) ∈ T . The fact that wn can be set fixed arbitrarily is proven below.

3. Use the dual vector w to calculate the reduced costs using c̄(i,j) = c(i,j) − wi + wj . If c̄ ≥ 0,
the current solution is optimal. Otherwise, choose some edge e∗ with c̄e∗ < 0 to enter the
basis.

4. Find the unique cycle C that contains e∗ and edges of T . Push flow around C until some
edge ê has value fê = 0. If this never happens, hC is a direction of unbounded improvement.

5. Repeat with the new basis T ∪ {e∗} \ ê.

Proof that complementary dual solutions have wn can be fixed arbitrarily

Consider the following LP with a redundant constraint and its dual

min cx

s.t.: Ax = b
aTx = d (redundant through linear dependence with Ax = b)
x ≥ 0,

max bT y + dy0
s.t.: AT y + y0a ≤ c.

Let a basic feasible solution with basis xB, xN , AB be defined in the usual way, so that when
solving complementary slackness we have AT

By+y0a = cB. Notice that when the linear dependence
is exploited for some λ 6= 0, [

AT

bT

]
λ =

[
a
d

]
,

we have from complementary slackness

A−TB y + y0(A
T
Bλ) = cB

AT
B(y + y0λ) = cB.
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Since AT
B is invertible, we can pick any y∗0 to get a unique solution y∗ = A−TB cB − y∗0λ. On the

other hand, this produces the objective value

bT (A−TB cB − y∗0λ) + dy∗0 = (A−1B b)T cB − y∗0bTλ+ dy0

= (A−1B b)T cB,

since bTλ = d. We see that the particular choice of y∗0 doesn’t matter, and can be chosen arbitrarily.

6-4


