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Last time, we considered the dual of linear programs in our “basic” form: max(cTx : Ax ≤ b).
We also considered an algebraic method for testing optimality of solution: To help find the optimal
solution, we generate upper bounds on the value of feasible solutions by taking linear combinations
of rows of constraints equal to c. That is, we find y such that AT y = c, with y ≥ 0. This
gives an upper bound yT b on cTx. Then, the best upper bound is given by the following LP:
min(yT b : AT y = c, y ≥ 0). We call this the dual LP.

We also mentioned two theorems regarding the dual LP: The weak duality theorem, which
states that the value of the primal LP is at most the value of the dual, and the strong duality
theorem, which states that if there exists a feasible solution to either the primal or the dual LP,
then the two LPs have the same value.

Today we will consider linear programs in other standard forms. We will derive rules for how
to take the duals of these other linear programs. See the Chapter 5 of Chvátal for a good summary
of these rules.

We will consider the “standard form” of linear programs, which has as a precise, technical
definition . Most algorithms used for solving linear programs assume that the input is given in the
standard form, and the formulation is not restrictive in any representational sense. The standard
form is defined as: min(c̄Tx : x ≥ 0, Āx = b̄). This formulation is the dual of our “basic” form,
and we have introduced the bars on each of A, b, and c to distinguish this from the dual that we
derived last class: min(yT b : y ≥ 0, AT y = c); Our new primal is equivalent to that dual in the
following way:

Translation: b̄ = c, c̄ = b, Ā = AT

We saw last time in the bakery example that duality was helpful for finding solutions to linear
programs, and there are two ways to think about taking the dual of the standard form of the LP.

1. By reducing to the form considered in last lecture: max(cTx : Ax ≤ b)

2. By finding best bound on primal

First, we will rewrite the linear program min(c̄Tx : x ≥ 0, Āx = b̄) in our “basic” form (namely,
as a maximization problem with ≤ constraints), and take its dual using the rules we derived last
time. This leads to a messy dual, and we will work on simplifying what we obtain. To understand
better what the dual is, we will also derive the dual using the idea that the dual is a way to derive
sharp bounds on the primal.

We start by converting our LP into our “basic” maximization form that uses inequalities only.
First we need to change from min to max, so instead of minimizing c̄Tx, we can consider maximizing
−c̄Tx. This only switches the sign of the result (but not the absolute value, nor the optimal solu-
tion). We will switch the sign back later. Furthermore, our “basic” form consisted only inequalities,
so we consider:

max−c̄Tx
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Āx ≤ b̄

−Āx ≤ −b̄
−Ix ≤ 0,

where I is the identity matrix. To get the dual, we introduce one dual variable for each row (i.e.
for each inequality constraint) of the primal, and so we have one dual variable corresponding to
each row of the resulting matrix above. We have three sets of rows, so we will use three different
names for the three sets of variables: y = (s, t, w) where the variables s, t and w correspond to the
blocks of rows in Ā, −Ā and −I, respectively. So, using the dual formulation from last lecture, we
have the following dual LP

min yT

 b̄
−b̄
0


 Ā
−Ā
−I

T

y = −c̄

y ≥ 0.

Since y = (s, t, w), we obtain

min

 s
t
w

T  b̄
−b̄
0


 Ā
−Ā
−I

T  s
t
w

 = −c̄

s, t, w ≥ 0,

which can be rewritten as
min sT b̄− tT b̄

ĀT s− ĀT t− Iw = −c̄
s, t, w ≥ 0.

We will simplify this. First recall that when creating the “basic” form equivalent, we switched
the sign of the objective, so let’s switch this back now: instead of minimizing sT b̄ − tT b̄ we will
maximize −sT b̄+ tT b̄. Further notice that s and t never occur by themselves any place, only t− s,
so we can use a new variable z = t − s. Both s and t had to be nonnegative, but t − s can be
of any sign and any value. The objective function then reads as max zT b̄, and the constraints will
be −ĀT z − Iw = −c̄. Note that this change makes an equivalent LP in the sense that given any
feasible solution using t and s, we get a feasible solution of the same value by setting z = t − s,
and similarly if we have a feasible solution for the LP using the variable z, we can get a feasible
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solution to the previous LP of the same value by setting ti = zi and si = 0 if zi ≥ 0, and si = |zi|
and ti = 0 if zi < 0.

The LP looks better if we multiply the constraints by −1. What we have so far is

max zT b̄

w ≥ 0

ĀT z + Iw = c̄.

We will further simplify what we get by eliminating the variables w. Our equations can be rewritten
to say that Iw = c̄− ĀT z. The only constraint we have about w is that it is nonnegative, and there
is no w in the objective function, so we can write the constraint as c̄− ĀT z ≥ 0, and not have the
variables w at all. The final form that we obtained for the dual is

max zT b̄

ĀT z ≤ c̄.

Recall that we use Ā, b̄, and c̄ to denote AT , c, and b, respectively. Substituting these back into
the the dual LP above, we note that we obtain an LP that is exactly the same as the primal LP
that we started from last time:

max zT c

Az ≤ b.

We have proved the following theorem.

Theorem 1 The dual of the dual LP is the same as the original primal LP.

Next we will work on understanding the dual, by creating it as a bound for the primal. Here is
the bounding idea via an example:

minx1 + x2

2x2 + x3 = 7

x1 − x3 = 2

x1, x2, x3 ≥ 0

If we add these two equations, we get that x1 + 2x2 = 9 for all feasible solutions (and that this is
the only way to eliminate x3 from the result). The objective function is to minimize x1 + x2, and
not x1 +2x2. An equivalent form of what we have is that (1/2)x1 +x2 = 9/2 for any primal feasible
x vector. From this form, we see that x1 + x2 must be at least 9/2 since x1 is non-negative.

Thus we get a lower bound on the LP by taking linear combinations of the equality constraints

y1 × (ā1x = b̄1)

y2 × (ā2x = b̄2)

· · ·
+ yn × (ānx = b̄n)
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such that the number of copies of each xj is at most cj . This implies that:

y1ā1j + y2ā2j + . . . + ynānj ≤ cj .

The bound we obtain is yT b̄. Thus for any feasible x, we have that c̄Tx ≥ yT b̄ if ĀT y ≤ c̄. Hence,
the best bound of this form is the following linear program:

max yT b̄

ĀT y ≤ c̄.

This is once again the dual of the original primal LP.
So far, we saw how to derive the dual for LPs in two forms: max(cTx : Ax ≤ b), and min(cTx :

x ≥ 0, Ax = b). The idea of understanding the dual as a bound for the primal leads to very simple
rules for creating dual linear programs without having to convert to any normal form. Here is a set
of rules for maximization type problems. For simplicity, we will only have = and ≤ type constraints,
i.e., I suggest that you take all ≥ type constraints for a maximization problem, and multiply them
by −1 to get ≤ type constraints before taking the dual. This form has some nonnegative variables,
and some unconstrained ones, some equations and some inequalities as constraints.

max cTx + c̄T x̄

Ax + Āx̄ ≤ b

Âx + Ãx̄ = b̄ (primal LP)

x ≥ 0

The dual has nonnegative variables y corresponding to the inequality constraints, variables ȳ un-
constrained in sign corresponding to the equations, and the nonnegative variables x give rise to
inequalities in the dual, whereas the unconstrained variables x̄ give rise to equations in the dual.
The dual LP is:

min yT b + ȳT b̄

AT y + ÂT ȳ ≥ c

ĀT y + ÃT ȳ = c̄ (dual LP)

y ≥ 0

In summary,

Primal Dual

Max ⇔ Min
≤ constraint ⇔ variable ≥ 0
= constraint ⇔ variable unconstrained
variable ≥ 0 ⇔ ≥ constraint

variable unconstrained ⇔ = constraint

2-4



Recall that the dual of the dual is the primal. So for an LP in the minimization form we can use
the above forms to take the dual.

As an aside it can be mentioned that solving linear inequalitites is essentially as difficult as
solving linear programs. Earlier discussions also suggests an algorithm for solving max(cTx : Ax ≤
b) knowing only that max(cTx : Ax ≤ b) ≤ B0

U . Assuming that we have a lower bound B0
L = cTx0

for some x0 in the feasable region, we can then follow the scheme below

for k = 0, 1, 2...K do
if ∃x∗ s.t. cTx∗ ≥ (Bk

L + Bk
U )/2 and Ax∗ ≤ b then

Bk+1
L = cTx∗;

Bk+1
U = Bk

U ;

xk+1 = x∗;

else

Bk+1
U = (Bk

L + Bk
U )/2;

Bk+1
K = Bk

L;

xk+1 = xk;

end

end
return (xK)

As an exercise the reader is welcome to prove that 0 ≤ cTx∗ − cTxK ≤ (B0
U −B0

L)/2K .
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