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1 Introduction

Last time we talked about polyhedra and polytopes. This time we will define bounded polyhedra
and discuss their relationship with polytopes. Recall from the last lecture the following definitions.

A polyhedron is P = {x € R" : Az < b}, A € R™*" m > n.
A polytope is Q = conv(vy, ..., vg) for finite k.
x € P is a vertex if 3¢ € R” such that ¢’z < cT'y for all y € P, y # .

r € P is an extreme point if Ay, z € P y,z # x such that z = Ay + (1 — A\)z, A € [0, 1].
x € P is a basic feasible solution if € P and it is basic (i.e., the rank of A— is n).

The three above definitions agree for Q(A,b).

Notice that the number of vertices of P is finite since given the m constraints in Az < b, we can
choose n of them to be met with equality; thus there are at most (:’;) basic solutions.

2 Polyhedra and Polytopes
Now we are interested in the following two questions:
e Q1: When is a polytope a polyhedron?

e Al: A polytope is always a polyhedron.

e Q2: When is a polyhedron a polytope?

e A2: A polyhedron is almost always a polytope.

We can give a counterexample to show why a polyhedron is not always but almost always a

polytope: an unbounded polyhedra is not a polytope. See Figure 1.

Lemma 1 All polytopes @Q := conv(vy,...,vx) are bounded.

Proof: z€Q — x= Zle Aivi, where Ele AN=1L\N=0Vi=1,..
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Figure 1: Examples of unbounded polyhedra that are not polytopes. (left) No extreme points,
(right) one extreme point.

By the triangle inequality:
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Definition 1 A polyhedron P is bounded if IM > 0, such that ||z|| < M for all x € P.

What we can show is this: every bounded polyhedron is a polytope, and vice versa. In this
lecture, we will show one side of the proof in one direction; we will show the other direction in the
next lecture. To start with, we need the following lemma.

Lemma 2 Any polyhedron P = {x € R" : Az < b} is convex.
Proof: If x,y € P, then Ax < b and Ay < b. Therefore,
AQz + (1= N)y) = Mz + (1 — N Ay < b+ (1 — \)b =b.

Thus z+ (1 — \)y € P. O

3 Representation of Bounded Polyhedra
We can now show the following theorem.

Theorem 3 (Representation of Bounded Polyhedra) A bounded polyhedron P is the set of
all convex combinations of its vertices, and is therefore a polytope.
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Proof: Let vy, vg,...,v; be the vertices of P. Since v; € P and P is convex (by previous
lemma), then any convex combination Zle Av; € P. So it only remains to show that any x € P
can be written as z = Zle A;v;, with A; > 0 and Zle o= 1.

Let A_ be all the constraints that z meets with equality (all rows a; such that a;xz = b;). Let
ra(x) be the rank of the corresponding A—. Recall from last time that ra(z) = n if and only if =
is a vertex of P. Now we prove the theorem by induction on n — ra(x).

Base case: Let n — ra(x) = 0. Then ra(z) = n and since x € P, x is a basic feasible solution, and
therefore a vertex of P.

Inductive Step: Suppose we have shown that for any y € P such that n —ra(y) < ¢ for some £ > 0,
y can be written as a convex combination of vy, vs,...,v;. Consider z € P with ra(z) =n—{ < n.
Then the rank of A_ < n, and thus there exists z such that A_z = 0. Since P is bounded, there
exist constants @ > 0 and a < 0 such that x + az € P if and only if a < a < @. Geometrically,
this is equivalent to moving from z in the direction az until we run into a constraint.

Then we can express x as

(e3 _
l‘—a_a(ahLQZ)%-a_g(ﬂc%-az).

Therefore, x is a convex combinations of two points in P. Now all we need to show is that x+az and
x+az are convex combinations of vertices. Since x+az € P, but x+az ¢ P for a > @, there exists
some constraint a; such that ajx < bj, but aj(z+az) = b;. This implies that ra(z+az) > ra(z), so
then n—ra(z+a@z) < n—ra(z) = {. Therefore, x +az can be expressed as a convex combination of
vertices vy, vg, ..., v by induction; we suppose x +az = Zle a;v;, where a; > 0 and Zle a; = 1.
Similarly, it must be the case that  + az is a convex combination of the vertices, and we can write
T+ az= Zle B;v;, where ; > 0 and Zle B; = 1.
Therefore, we have




a'z=b

Figure 2: Separating hyperplane

where §; = %ai + =6; > 0 and

a—a a—«o

Thus z is a convex combination of the vertices. O

4 Separating Hyperplane Theorem

To begin showing the proof in the opposite direction (that is, showing that every polytope is a
bounded polyhedron), we will need a theorem called the separating hyperplane theorem. To prove
the theorem, we will use the following theorem from analysis, which we give without proof.

Theorem 4 (Weierstrass) Let C C R" be a closed, non-empty and bounded set. Let f : C' — R
be continuous on C. Then f attains a mazimum (and a minimum) on some point of C'.

Suppose f(z) = %Hl‘ —yl|, for all z € C. We'd like to apply Weierstrass’ theorem to find the
minimizer of f in C, but C may not be bounded. To get around this, we pick some g € C', which we
can do since C' is non-empty. Then, let C' = {z € C: ||g — y|| > ||z — y||}. C is closed, non-empty
and bounded; we see that C' is bounded since for z € C, we have ||z|| < |lyll + lly — z|| by the

triangle inequality and ||y|| + ||y — || < |ly|| + |l¢ — y|| by the definition of C'; both ||y|| and |lg — ||
are constant terms. Now we can apply Weierstrass’ theorem on C to find a point z that minimizes

1.

Theorem 5 (Separating Hyperplane) Let C C R" be closed, non-empty and convex set. Let
y & C, then there exists a hyperplane a # 0, a € R", b € R, such that a’y > b and o’z < b, for all
zeC.

4-4



Proof: Define
fz) =z —yl]?
C={zeC:l|lg—yll >llq— |}

Apply Weierstrass’ theorem. Let z be the minimizer of f in C. Note that for any z € C\C’,
f(z) < f(q) < f(z), and therefore z minimizes f over all of C, since any = ¢ C must have been
further away from y than q.

Let a =y — z. Then a # 0, since z € C,y ¢ C. Let b= %(aTy +a’%). Then,
T( T

O0<ala=al(y—z)=aly—a’z

so then
aly>dlz = 2Ty>dly+dz = ay> %(aTy +alz) =0
It remains to show that a’z < bforallz € C. Let x) = (1—\)z+ Az € C for 0 < A < 1. Since
z minimizes f over C, f(z) < f(zy)). Thus,

flan) = 5(1=Nz+ Az =T (L= Nz + Az —y) (z =y + Az —2)"(z—y+ Az —2))

(z—y)"(z—y) = f(2).

N[—= D=

Rewriting, we obtain

20z =) Mz —2) + X2z — )T (@ —2)] > 0
=y (@—2)+iNz—2)T(z—2) >
(IT(Z—ZL‘)—F%)\(:L‘—Z)T(a:—z) > 0

al'(z —z) > =Xz - 2)T(z - 2).

But we can take A — 0 arbitrarily small, so a’ (z —x) > 0 which implies a” 2z > a”x. Using the fact
that o’z < a’y,
b=1(aly+a'z) > 1(2a"2) =alz > a2
O
Corollary 6 Suppose C and D are closed, convex, nonempty, and C N D = (). Define C — D =

{z —y|z € C,y € D}, and suppose C — D is closed.
Then, Ja € R™\{0},b € R such that

supalz < b < inf aly.
zeC yeD

Proof: We leave it as an exercise to the reader to prove that Y = C'— D is convex.
Since C N D =, we have 0 ¢ C — D. ~
Then, by the separating hyperplane theorem, 3a € R™\{0},b € R such that, Vx € C,Vy € D
al(z—y)<b<0

— supalz—b < inf aly.
zeC yeD
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Because b < 0, we know that sup,cc alz < infyep a’y. Thus, to finish the proof, let

1
b= = su aTa:—i—infaT).
2 <CEEIC)’ yeD Y
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