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1 Introduction

Last time we talked about polyhedra and polytopes. This time we will define bounded polyhedra
and discuss their relationship with polytopes. Recall from the last lecture the following definitions.

A polyhedron is P = {x ∈ Rn : Ax ≤ b}, A ∈ Rm×n, m ≥ n.
A polytope is Q = conv(v1, . . . , vk) for finite k.

x ∈ P is a vertex if ∃c ∈ Rn such that cTx < cT y for all y ∈ P , y 6= x.
x ∈ P is an extreme point if @y, z ∈ P y, z 6= x such that x = λy + (1− λ)z, λ ∈ [0, 1].
x ∈ P is a basic feasible solution if x ∈ P and it is basic (i.e., the rank of A= is n).
The three above definitions agree for Q(A, b).

Notice that the number of vertices of P is finite since given the m constraints in Ax ≤ b, we can
choose n of them to be met with equality; thus there are at most

(
m
n

)
basic solutions.

2 Polyhedra and Polytopes

Now we are interested in the following two questions:

• Q1: When is a polytope a polyhedron?

• A1: A polytope is always a polyhedron.

• Q2: When is a polyhedron a polytope?

• A2: A polyhedron is almost always a polytope.

We can give a counterexample to show why a polyhedron is not always but almost always a
polytope: an unbounded polyhedra is not a polytope. See Figure 1.

Lemma 1 All polytopes Q := conv(v1, . . . , vk) are bounded.

Proof: x ∈ Q =⇒ x =
∑k

i=1 λivi, where
∑k

i=1 λi = 1, λi = 0 ∀i = 1, . . . , k.
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Figure 1: Examples of unbounded polyhedra that are not polytopes. (left) No extreme points,
(right) one extreme point.

By the triangle inequality:

‖x‖ ≤
k∑
i=1

‖λivi‖

=

k∑
i=1

λivi

≤ max
i
‖vi‖

k∑
i=1

λi

= max
i
‖vi‖.

�

Definition 1 A polyhedron P is bounded if ∃M > 0, such that ‖x‖ ≤M for all x ∈ P .

What we can show is this: every bounded polyhedron is a polytope, and vice versa. In this
lecture, we will show one side of the proof in one direction; we will show the other direction in the
next lecture. To start with, we need the following lemma.

Lemma 2 Any polyhedron P = {x ∈ <n : Ax ≤ b} is convex.

Proof: If x, y ∈ P , then Ax ≤ b and Ay ≤ b. Therefore,

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay ≤ λb+ (1− λ)b = b.

Thus x+ (1− λ)y ∈ P. �

3 Representation of Bounded Polyhedra

We can now show the following theorem.

Theorem 3 (Representation of Bounded Polyhedra) A bounded polyhedron P is the set of
all convex combinations of its vertices, and is therefore a polytope.
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Proof: Let v1, v2, . . . , vk be the vertices of P . Since vi ∈ P and P is convex (by previous
lemma), then any convex combination

∑k
i=1 λivi ∈ P . So it only remains to show that any x ∈ P

can be written as x =
∑k

i=1 λivi, with λi ≥ 0 and
∑k

i=1 λi = 1.
Let A= be all the constraints that x meets with equality (all rows ai such that aix = bi). Let

ra(x) be the rank of the corresponding A=. Recall from last time that ra(x) = n if and only if x
is a vertex of P . Now we prove the theorem by induction on n− ra(x).

Base case: Let n− ra(x) = 0. Then ra(x) = n and since x ∈ P , x is a basic feasible solution, and
therefore a vertex of P .

Inductive Step: Suppose we have shown that for any y ∈ P such that n− ra(y) < ` for some ` > 0,
y can be written as a convex combination of v1, v2, . . . , vk. Consider x ∈ P with ra(x) = n− ` < n.
Then the rank of A= < n, and thus there exists z such that A=z = 0. Since P is bounded, there
exist constants α > 0 and α < 0 such that x + αz ∈ P if and only if α ≤ α ≤ α. Geometrically,
this is equivalent to moving from x in the direction αz until we run into a constraint.

Then we can express x as

x =
α

α− α
(x+ αz) +

−α
α− α

(x+ αz).

Therefore, x is a convex combinations of two points in P . Now all we need to show is that x+αz and
x+αz are convex combinations of vertices. Since x+αz ∈ P , but x+αz /∈ P for α > α, there exists
some constraint aj such that ajx < bj , but aj(x+αz) = bj . This implies that ra(x+αz) > ra(x), so
then n−ra(x+αz) < n−ra(x) = `. Therefore, x+αz can be expressed as a convex combination of
vertices v1, v2, . . . , vk by induction; we suppose x+αz =

∑k
i=1 αivi, where αi ≥ 0 and

∑k
i=1 αi = 1.

Similarly, it must be the case that x+αz is a convex combination of the vertices, and we can write
x+ αz =

∑k
i=1 βivi, where βi ≥ 0 and

∑k
i=1 βi = 1.

Therefore, we have

x =
α

α− α
(x+ αz) +

−α
α− α

(x+ αz)

=
α

α− α

k∑
i=1

αivi +
−α
α− α

k∑
i=1

βivi

=

k∑
i=1

(
α

α− α
αi +

−α
α− α

βi

)
vi

=
k∑
i=1

δivi,
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Figure 2: Separating hyperplane

where δi = α
α−ααi + −α

α−αβi ≥ 0 and

k∑
i=1

δi =

k∑
i=1

(
α

α− α
αi +

−α
α− α

βi

)

=
α

α− α

k∑
i=1

αi +
−α
α− α

k∑
i=1

βi

=
α

α− α
+
−α
α− α

= 1.

Thus x is a convex combination of the vertices. �

4 Separating Hyperplane Theorem

To begin showing the proof in the opposite direction (that is, showing that every polytope is a
bounded polyhedron), we will need a theorem called the separating hyperplane theorem. To prove
the theorem, we will use the following theorem from analysis, which we give without proof.

Theorem 4 (Weierstrass) Let C ⊆ <n be a closed, non-empty and bounded set. Let f : C → <
be continuous on C. Then f attains a maximum (and a minimum) on some point of C.

Suppose f(x) = 1
2‖x − y‖, for all x ∈ C. We’d like to apply Weierstrass’ theorem to find the

minimizer of f in C, but C may not be bounded. To get around this, we pick some q ∈ C, which we
can do since C is non-empty. Then, let Ĉ = {x ∈ C : ‖q − y‖ ≥ ‖x− y‖}. Ĉ is closed, non-empty
and bounded; we see that Ĉ is bounded since for x ∈ Ĉ, we have ‖x‖ ≤ ‖y‖ + ‖y − x‖ by the
triangle inequality and ‖y‖+ ‖y− x‖ ≤ ‖y‖+ ‖q− y‖ by the definition of Ĉ; both ‖y‖ and ‖q− y‖
are constant terms. Now we can apply Weierstrass’ theorem on Ĉ to find a point z that minimizes
f .

Theorem 5 (Separating Hyperplane) Let C ⊆ <n be closed, non-empty and convex set. Let
y /∈ C, then there exists a hyperplane a 6= 0, a ∈ <n, b ∈ <, such that aT y > b and aTx < b, for all
x ∈ C.
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Proof: Define
f(x) = 1

2 ||x− y||
2

Ĉ = {x ∈ C : ||q − y|| ≥ ||q − x||}.

Apply Weierstrass’ theorem. Let z be the minimizer of f in Ĉ. Note that for any x ∈ C\Ĉ,
f(z) ≤ f(q) < f(x), and therefore z minimizes f over all of C, since any x /∈ Ĉ must have been
further away from y than q.

Let a = y − z. Then a 6= 0, since z ∈ C, y /∈ C. Let b = 1
2(aT y + aT z). Then,

0 < aTa = aT (y − z) = aT y − aT z

so then
aT y > aT z ⇒ 2aT y > aT y + aT z ⇒ aT y > 1

2(aT y + aT z) = b.

It remains to show that aTx < b for all x ∈ C. Let xλ = (1−λ)z+λx ∈ C for 0 < λ ≤ 1. Since
z minimizes f over C, f(z) ≤ f(xλ). Thus,

f(xλ) = 1
2((1− λ)z + λx− y)T ((1− λ)z + λx− y) = 1

2(z − y + λ(x− z))T (z − y + λ(x− z))
≥ 1

2(z − y)T (z − y) = f(z).

Rewriting, we obtain

1
2 [2(z − y)Tλ(x− z) + λ2(x− z)T (x− z)] ≥ 0

(z − y)T (x− z) + 1
2λ(x− z)T (x− z) ≥ 0

aT (z − x) + 1
2λ(x− z)T (x− z) ≥ 0

or
aT (z − x) ≥ −1

2λ(x− z)T (x− z).

But we can take λ→ 0 arbitrarily small, so aT (z−x) ≥ 0 which implies aT z ≥ aTx. Using the fact
that aT z < aT y,

b = 1
2(aT y + aT z) ≥ 1

2(2aT z) = aT z > aTx.

�

Corollary 6 Suppose C and D are closed, convex, nonempty, and C ∩ D = ∅. Define C − D =
{x− y|x ∈ C, y ∈ D}, and suppose C −D is closed.

Then, ∃a ∈ Rn\{0}, b ∈ R such that

sup
x∈C

aTx < b < inf
y∈D

aT y.

Proof: We leave it as an exercise to the reader to prove that Y = C −D is convex.
Since C ∩D = ∅, we have 0 6∈ C −D.
Then, by the separating hyperplane theorem, ∃a ∈ Rn\{0}, b ∈ R such that, ∀ x ∈ C,∀ y ∈ D

aT (x− y) < b < 0

=⇒ sup
x∈C

aTx− b ≤ inf
y∈D

aT y.
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Because b < 0, we know that supx∈C a
Tx < infy∈D a

T y. Thus, to finish the proof, let

b =
1

2

(
sup
x∈C

aTx+ inf
y∈D

aT y

)
.

�
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