ORIE 6300 Mathematical Programming I September 6, 2016

Lecture 5

Lecturer: Damek Davis Scribe: Rundong Wu

1 Review
A while back, we defined polyhedrons and polytopes as follows.

Definition 1 A Polyhedron is P = {x € R™ : Az < b}

Definition 2 A Polytope is given by Q = conv(v1,va, ..., v;), where the v; are the vertices of the
polytope, for k finite.

Also recall the equivalence of extreme points, vertices and basic feasible solutions, and recall
the definition of a bounded polyhedron.

Definition 3 A polyhedron P is bounded iff IM > 0 such that ||z|| < M, Yz € P.

We showed bounded polyhedra were polytopes by taking the extreme points and seeing that
they were the vertices for P as a polytope.
Recall also the Separating Hyperplane Theorem from a previous lecture.

Theorem 1 (Separating Hyperplane) Let C C R™ be a closed, nonempty and convexr set. Let
y € R"\C and let

x* = Po(y) := argmmzeCEHx - yH2

Then there exists a number b € R, such that with a =y — z*, we have

(Vz e C) alz <adlz* <b<aly.

2 The polar of a set

Now we want to prove that polytopes are bounded polyhedra. To do this, we need to introduce
one more concept.

Definition 4 Let S CR"™. We call the set
S°={zeR":2Tx<1,Vzes},

the polar set of S.
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Figure 1: The polar of the ¢ ball is the ¢; norm ball.

Example 1 (Polars of the /., and ¢; balls.) Consider S = {(x1,z2) : -1 < a1 < 1, =1 <
x9 < 1}, the region is shown in the left of Figure 1.
By definition, x € S° if, and only if, |x1| + |v2| = sup(,, .,yes{T121 + 222} < 1. Thus,
S ={z e R": |z1| + |x2| < 1}, which is shown on the right hand side of Figure 1.
Now let’s consider S°°. By definition, x € (S°)° if, and only if, max{|z1|, |z2|} = Sup|y,|¢|za<1 {121+
xoz2} < 1. Thus, (5°)° ={(z1,22) : =1 <21 <1, =1 <z <1} =5.

Lemma 2 If C is a closed convexr subset of R™ with 0 € C, then C°° := (C°)° = C.

Proof:

e (D) Suppose that # € C. Then x € C°° if, and only if, 22 < 1 for all z € C°. This is clearly
true because z € C° implies that 27z < 1.

e (C) We will show that if ¢ C, then x ¢ C°°. First note that C is closed and convex with
at least z = 0 € C. If x ¢ C, then by the Separating Hyperplane Theorem, there exists
0#a€R”and b € R with a’z > b > a2 for all z € C. Since 0 € C, we have b > 0. Let
@ =a/b#0. Therefore a’x > 1 > a’z, for all z € C. This implies @ € C°. But @’z > 1, so
x ¢ C°.

Therefore C°° = C. OJ

3 Polytopes are Bounded Polyhedra

Now we can prove our result, at least sort of. We’ll assume that 0 is in the interior of the polytope.
We claim that this can be done without loss of generality; this is because we can translate the
polytope to have 0 € P, apply the following proof and then translate back if needed.

Theorem 3 If QQ C R" is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.

Proof: Our proof strategy is as follows. (1) We will first show that the polar of a polytope is a
polyhedron. (2) We then show that that since the polytope has 0 in its interior, then the polar of
the polytope is bounded. So then P = Q° is a bounded polyhedron. (3) We know from a previous
lecture that any bounded polyhedron is a polytope, so P = Q° is a polytope. (4) But then applying
the proof that the polar of a polytope is a polyhedron, we get that P° = Q°° = @ (by the lemma
above) is a polyhedron. It is easy to prove that a polytope is bounded. Thus, we must prove (1)
and (2).
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(1) We first prove that the polar of @ is a polyhedron. Let P = Q°. Then we know that
P° = Q°° = Q. Since @ is a polytope, @ = conv{vi, ..., v} for some k finite vectors vy, ..., v, € R™.
We claim that
P={zeR":v]2<1,i=1,...,k}.
One the one hand, P = Q° = {z e R" : 272 < 1,Vzr € Q}, so v}z = 2Tv; <1 fori=1,2,... k,
which implies that P C {z € R" : v}z < 1,4 = 1,...,k}. On the other hand, if z7v; < 1 for
1=1,...,k, then for any z € Q, with = = Zle Aiv; for some \; >0, \; = 1, we have

k k
zTJJ:zTZ)\m Z)\ 2T v;) §Z

15=1

which proves the claim. Thus P is a polyhedron.
(2) Because 0 € int(Q), there exists some € > 0 such that all z € R” with ||z| < € lie in Q. If
z € P, z # 0, then, because ||z|| < €, we have

€ z
r=—-——€Q.
2|2l
Because P = Q°,
T ezl 2 2
rrz<1l = <1 = |z||<-
2||2[] €
Hence P is a bounded polyhedron. ]

4 Normal Cone

Modern optimization theory crucially relies on a concept called the normal cone.

Definition 5 Let S C R"™ be a closed, convex set. The normal cone of S is the set-valued mapping
Ng: R® = 28" given by

Ns(x):{ ége}R”’(VzGS) g7 (z —z) <0} z%;g
f—‘l"_? e-;-—-ﬁ. -
|

(> (2) (3) / (4) //

Figure 2: Normal cones of several convex sets.
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Example 2 We compute several normal cones; see Figure 2.

1. Let S = {z}.
| R* ifrx==z2
Ns(w) = { 0 otherwise
2. Let S =0,1].
R<0 lf z=0
RZO Zf r=1
{0} if z€(0,1)

0 otherwise

Ng(z) =

3. Let S=A{z | ||z|| <1, z € R"}.

Rxoz if |lz] =1
Ns(z) =9 {0} if [lz] <1
0 otherwise

4. The normal cone of a triangle, computed at some but not all points, is depicted in Figure 2.
Normal cones satisfy several useful properties.

Proposition 4 Let S C R"™ be a nonempty, closed, convex set. Then the following hold:
1. If z € S, then Ng(z) is a convex cone, i.e.

(VA1 >0), (VA2 > 0), (Vg1 € Ns(z)), (Vg2 € Ns(x)) Ag1 + Mgz € Ns(z).

2. Let y € R"\S, then Ps(y) = <= y—x € Ng(x).
3. If x € int(S), then Ng(x) = {0}.
4. If x € S and x ¢ int(S), then Ng(z) 2 {0}.
Proof:
1. We leave the proof of part 1 as an exercise.
2. (=): By separating hyperplane theorem, with a =y — Ps(y) =y —z, 3 b € R, s.t.

(Vz€8) aTz<aTPs(y) <aly
= a’(z—Ps(y)) <0
= a € Ns(Ps(y))

(<): If y — 2 € Ng(x), then

Vze S (y—2)T(z—2) <0
= (y—2)"(y—z)+(@y—2)"(z-y) <0
= ly—zl? < (y—2)"(y = 2) < lly — 2|| |ly — 2| (Cauchy — Schwarz inequality)
- ly—all < Ily—=II, vz € §
= x = Ps(y)
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3. Suppose that g € Ng(x). Because x € int(S), there exists € > 0, such that z + eg € S.
Therefore, we have

9" ((z +eg) —x) <0
= eg"g <0

4

g=0.
Hence, Ng(z) = {0}.

4. Since z ¢ int(S), there exists a sequence y* € R™\S, s.t. y¥ — x as k — oo. We leave it as
an exercise to prove that if ¥ = Pg(y*), then 2* — z, k — oo.

Let ¢* = % Then, by part 5, we have ¢¥ € Ng(z¥). Without loss of generality, we can

assume that g% — g € R", with ||g|| = 1.

We claim that ¢ € Ng(z). To prove the claim, note that since ¢* € Ng(z¥), we have
(¢")"(z —2%) <0, and

g (z—z) = (9—-g")"(z—2)+ (") (z—2)
= (- -2+ (@G —2)+ (") (z -2
< (9-g""(E-2)+ (6" (=" -
— 0 as k— o

So for all z € S, we have g7 (2 — ) < 0, which means g € Ng(z). Obviously 0 € Ng(x), so
{0} € Ns(x).

O
Proposition 5 shows that normal cones detect the boundary and interior of convex sets.

Corollary 5 Let S CR" be a nonempty, closed, convex set. Then
o Ng(z) ={0} if, and only if, z € int(S5).
o Ng(z) 2 {0} if, and only if, x € S\int(S).
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