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Lecture 5

Lecturer: Damek Davis Scribe: Rundong Wu

1 Review

A while back, we defined polyhedrons and polytopes as follows.

Definition 1 A Polyhedron is P = {x ∈ Rn : Ax ≤ b}

Definition 2 A Polytope is given by Q = conv(v1, v2, ..., vk), where the vi are the vertices of the
polytope, for k finite.

Also recall the equivalence of extreme points, vertices and basic feasible solutions, and recall
the definition of a bounded polyhedron.

Definition 3 A polyhedron P is bounded iff ∃M > 0 such that ||x|| ≤M, ∀x ∈ P .

We showed bounded polyhedra were polytopes by taking the extreme points and seeing that
they were the vertices for P as a polytope.

Recall also the Separating Hyperplane Theorem from a previous lecture.

Theorem 1 (Separating Hyperplane) Let C ⊆ Rn be a closed, nonempty and convex set. Let
y ∈ Rn\C and let

x∗ = PC(y) := argminx∈C
1

2
‖x− y‖2.

Then there exists a number b ∈ R, such that with a = y − x∗, we have

(∀x ∈ C) aTx ≤ aTx∗ < b < aT y.

2 The polar of a set

Now we want to prove that polytopes are bounded polyhedra. To do this, we need to introduce
one more concept.

Definition 4 Let S ⊆ Rn. We call the set

S◦ = {z ∈ Rn : zTx ≤ 1, ∀x ∈ S},

the polar set of S.
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Figure 1: The polar of the `∞ ball is the `1 norm ball.

Example 1 (Polars of the `∞ and `1 balls.) Consider S = {(x1, x2) : −1 ≤ x1 ≤ 1, −1 ≤
x2 ≤ 1}, the region is shown in the left of Figure 1.

By definition, x ∈ S◦ if, and only if, |x1| + |x2| = sup(z1,z2)∈S{x1z1 + x2z2} ≤ 1. Thus,
S◦ = {x ∈ Rn : |x1|+ |x2| ≤ 1}, which is shown on the right hand side of Figure 1.

Now let’s consider S◦◦. By definition, x ∈ (S◦)◦ if, and only if, max{|z1|, |z2|} = sup|x1|+|x2|≤1{x1z1+
x2z2} ≤ 1. Thus, (S◦)◦ = {(x1, x2) : −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1} = S.

Lemma 2 If C is a closed convex subset of Rn with 0 ∈ C, then C◦◦ := (C◦)◦ = C.

Proof:

• (⊇) Suppose that x ∈ C. Then x ∈ C◦◦ if, and only if, zTx ≤ 1 for all z ∈ C◦. This is clearly
true because z ∈ C◦ implies that zTx ≤ 1.

• (⊆) We will show that if x /∈ C, then x /∈ C◦◦. First note that C is closed and convex with
at least z = 0 ∈ C. If x /∈ C, then by the Separating Hyperplane Theorem, there exists
0 6= a ∈ Rn and b ∈ R with aTx > b > aT z for all z ∈ C. Since 0 ∈ C, we have b > 0. Let
ã = a/b 6= 0. Therefore ãTx > 1 > ãT z, for all z ∈ C. This implies ã ∈ C◦. But ãTx > 1, so
x /∈ C◦◦.

Therefore C◦◦ = C. �

3 Polytopes are Bounded Polyhedra

Now we can prove our result, at least sort of. We’ll assume that 0 is in the interior of the polytope.
We claim that this can be done without loss of generality; this is because we can translate the
polytope to have 0 ∈ P , apply the following proof and then translate back if needed.

Theorem 3 If Q ⊆ Rn is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.

Proof: Our proof strategy is as follows. (1) We will first show that the polar of a polytope is a
polyhedron. (2) We then show that that since the polytope has 0 in its interior, then the polar of
the polytope is bounded. So then P = Q◦ is a bounded polyhedron. (3) We know from a previous
lecture that any bounded polyhedron is a polytope, so P = Q◦ is a polytope. (4) But then applying
the proof that the polar of a polytope is a polyhedron, we get that P ◦ = Q◦◦ = Q (by the lemma
above) is a polyhedron. It is easy to prove that a polytope is bounded. Thus, we must prove (1)
and (2).
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(1) We first prove that the polar of Q is a polyhedron. Let P = Q◦. Then we know that
P ◦ = Q◦◦ = Q. SinceQ is a polytope, Q = conv{v1, . . . , vk} for some k finite vectors v1, . . . , vk ∈ Rn.
We claim that

P = {z ∈ Rn : vTi z ≤ 1, i = 1, . . . , k}.

One the one hand, P = Q◦ = {z ∈ Rn : xT z ≤ 1, ∀x ∈ Q}, so vTi z = zT vi ≤ 1 for i = 1, 2, . . . , k,
which implies that P ⊆ {z ∈ Rn : vTi z ≤ 1, i = 1, . . . , k}. On the other hand, if zT vi ≤ 1 for

i = 1, . . . , k, then for any x ∈ Q, with x =
∑k

i=1 λivi for some λi ≥ 0,
∑

i λi = 1, we have

zTx = zT
k∑

is=1

λivi =

k∑
i=1

λi(z
T vi) ≤

k∑
i=1

λi = 1,

which proves the claim. Thus P is a polyhedron.
(2) Because 0 ∈ int(Q), there exists some ε > 0 such that all x ∈ Rn with ‖x‖ < ε lie in Q. If

z ∈ P , z 6= 0, then, because ‖x‖ < ε, we have

x =
ε

2

z

||z||
∈ Q.

Because P = Q◦,

xT z ≤ 1 ⇒ εzT z

2||z||
≤ 1 ⇒ ||z|| ≤ 2

ε
.

Hence P is a bounded polyhedron. �

4 Normal Cone

Modern optimization theory crucially relies on a concept called the normal cone.

Definition 5 Let S ⊂ Rn be a closed, convex set. The normal cone of S is the set-valued mapping
NS : Rn → 2R

n
, given by

NS(x) =

{
{g ∈ Rn| (∀z ∈ S) gT (z − x) ≤ 0} if x ∈ S
∅ if x /∈ S

Figure 2: Normal cones of several convex sets.
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Example 2 We compute several normal cones; see Figure 2.

1. Let S = {z}.

NS(x) =

{
Rn if x = z
∅ otherwise

2. Let S = [0, 1].

NS(x) =


R≤0 if x = 0
R≥0 if x = 1
{0} if x ∈ (0, 1)
∅ otherwise

3. Let S = {x | ‖x‖ ≤ 1, x ∈ Rn}.

NS(x) =


R≥0x if ‖x‖ = 1
{0} if ‖x‖ < 1
∅ otherwise

4. The normal cone of a triangle, computed at some but not all points, is depicted in Figure 2.

Normal cones satisfy several useful properties.

Proposition 4 Let S ⊆ Rn be a nonempty, closed, convex set. Then the following hold:

1. If x ∈ S, then NS(x) is a convex cone, i.e.

(∀λ1 ≥ 0), (∀λ2 ≥ 0) , (∀g1 ∈ NS(x)) , (∀g2 ∈ NS(x)) λ1g1 + λ2g2 ∈ NS(x).

2. Let y ∈ Rn\S, then PS(y) = x ⇐⇒ y − x ∈ NS(x).

3. If x ∈ int(S), then NS(x) = {0}.

4. If x ∈ S and x /∈ int(S), then NS(x) ) {0}.

Proof:

1. We leave the proof of part 1 as an exercise.

2. (⇒): By separating hyperplane theorem, with a = y − PS(y) = y − x, ∃ b ∈ R, s.t.

(∀z ∈ S) aT z ≤ aTPS(y) ≤ aT y
⇒ aT (z − PS(y)) ≤ 0

⇒ a ∈ NS(PS(y))

(⇐): If y − x ∈ NS(x), then

∀z ∈ S (y − x)T (z − x) ≤ 0

⇐⇒ (y − x)T (y − x) + (y − x)T (z − y) ≤ 0

⇒ ||y − x||2 ≤ (y − x)T (y − z) ≤ ||y − x|| ||y − z|| (Cauchy − Schwarz inequality)

⇒ ||y − x|| ≤ ||y − z||, ∀z ∈ S
⇒ x = PS(y)
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3. Suppose that g ∈ NS(x). Because x ∈ int(S), there exists ε > 0, such that x + εg ∈ S.
Therefore, we have

gT ((x+ εg)− x) ≤ 0

⇒ εgT g ≤ 0

⇒ g = 0.

Hence, NS(x) = {0}.

4. Since x /∈ int(S), there exists a sequence yk ∈ Rn\S, s.t. yk → x as k → ∞. We leave it as
an exercise to prove that if xk = PS(yk), then xk → x, k →∞.

Let gk = yk−xk

||yk−xk|| . Then, by part 5, we have gk ∈ NS(xk). Without loss of generality, we can

assume that gk → g ∈ Rn, with ‖g‖ = 1.

We claim that g ∈ NS(x). To prove the claim, note that since gk ∈ NS(xk), we have
(gk)T (z − xk) ≤ 0, and

gT (z − x) = (g − gk)T (z − x) + (gk)T (z − x)

= (g − gk)T (z − x) + (gk)T (xk − x) + (gk)T (z − xk)

≤ (g − gk)T (z − x) + (gk)T (xk − x)

→ 0 as k →∞

So for all z ∈ S, we have gT (z − x) ≤ 0, which means g ∈ NS(x). Obviously 0 ∈ NS(x), so
{0} ( NS(x).

�
Proposition 5 shows that normal cones detect the boundary and interior of convex sets.

Corollary 5 Let S ⊆ Rn be a nonempty, closed, convex set. Then

• NS(x) = {0} if, and only if, x ∈ int(S).

• NS(x) ) {0} if, and only if, x ∈ S\int(S).
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