ORIE 6300 Mathematical Programming I September 13, 2016

Lecture 7

Lecturer: Damek Davis Scribe: Jiangiu Wang

1 Review

Last time we talked about normal cone of polyhedra:

Nigas<oy () = {ATyly > 0,y (b — Az) = 0}
N{y|y20,ATy:c} (y) = {_b|(3$)Ax <b, yT(b - A‘r) = 0}

We also proved strong duality in feasible case.

2 Strong Duality (Continued)

Lemma 1 Let ¢ € R", suppose that p* = sup {c'z|z € Q(A,b)} is finite, then 3x* € Q(A,b), so
that p* = ¢l z*

Proof: Let S1 = {z|cTx = p*} and S3 = Q(A,b),. Suppose that S; NSy = (). We have the
following claim:

Claim 2 S — Sy = {z — z|cT'z = p*, Az < b} is closed.

We will prove this claim in the next lecture.

Thus by Separating Hyperplane Theorem:

J(aeR™N\{0},beR), st.supa’z<b< infa'y.
€Sy YyES2

We know V e > 0,3 2. € So, s.t. p* —e < cl'z. < p*. Because S; C {z|a’z < l;}, we have
dist(z., 1) > dist(ze, {z|aTz < b}) (where dist(z, S) = ||z — Ps(z)|| denotes the distance of a point
to a closed convex set S).

We leave following two conclusions as exercises (x4 := max{z,0})

T *

L. Pg (x) =z — g

aTz—b)4 »
2. Ppjarpciy (@) =2 — %T)*a.

Thus
diSt(CCE, Sl) = HZEg - PS1 ($8)”

H cror )
=\ T

_ ez —pt _ e
llell ~ lell’
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and, by a similar argument,

dist(zz, {z]a"e < b}) = ||z — Ppyjar,cpy (@2

laTz. — b

lall

By assumption, we have

~

~T. . 7 ~T..
0<inf‘ax b‘<infw

7 €
— inf di 7T < < inf di < inf B
e S B Tl dist(ee {z]67e < b)) < Inf dist(ze, 51) < Infrow =0

=
We have reached a contradiction, so

3% € Q(A,b) s.t. Lzt =p*.

Theorem 3 (Strong Duality Infeasible Case) Consider the linear programs:

p* = maz(c 2| Az <b), d* = min(bTy|ATy = ¢,y > 0)

3. d* = oo and primal is unbounded and p* = oo,
4. p* = —o0 and dual is unbounded and d* = —oo

Proof of 3:

(a) Suppose d* = oo and the primal is feasible. If 32* € Q(A4,b), s.t. cl'z*is maximal, then
c € Ngap(z*) = {ATyly > 0,y" (b— Az*) = 0}. Any y that satisfies c = ATy, y > 0 is feasible for
the dual. This contradicts the infeasibility of the dual. Thus p* = oo and Q(A, b) is unbounded.
(b) If Q(A,d) is unbounded, and p* = oo, then by weak dualiyty theorem, d* > p* = 0o O
Proof of 4: We leave it as an exercise. O

3 Consequence of Strong Duality

Theorem 4 (Theorem of Alternatives) Exactly one of the following hold:

1. dx, s.t. Ax <b,

2. 3y, s.t. ATy=0,"y<0,y>0.
Proof: We firstly prove 1 and 2 cannot hold simultaneously. If z satisfies 1 and y satisfies 2,
then 0 = 37 (Az) < y7b < 0.

Secondly, suppose 1 is false, then max{s|Az + s1 < b,s < 0} always has a solution (we are
maximizing a negative number). Write this program in matrix form:

o )=
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This linear program has an optimal solution (z*,s*) and optimal value s* < 0. By strong duality,
the dual

min b’y
AT 0] [y 0
[ 31 =[]
y=>0,t>0

has an optimal solution (y*,t*) with optimal value b”y* = s* < 0 and ATy* = 0,y* > 0.
Now suppose 2 is false, then 1 cannot be false (otherwise 2 would be true), hence 1 is true. O

4 Sentivity Analysis and Value Function
Definition 1 (Mazimal Value Function) v(u) = max{c’ z|Az < b+ u}.

We have following two natural questions:

1. Can we bound the value function in terms of v(0)? If v(u) is particularly expensive to
compute, knowing a bound on it in terms of v(0) can help us determine whether it might be
worth it to re-solve the linear program.

2. What is the rate of change, i.e., the derivative of v?

Lemma 5 Suppose v(0) exists and x*(0) € Q(A, b) satisfies ¢’ z*(0) = p*. Let dom(v) := {u|v(u) >
—oo}. Then following three hold:

1. Yu € R™ v(u) < oo;
2. v 1§ concave;

3. v 1s piecewise linear.

Proof of 1: Since z*(0) exists, we know Jyg > 0, s.t. ATyg = ¢ (by strong duality), so
V(u) = max {c'z|Az < b+ u} < min{(b+u)Tyly > 0,47y = ¢} < (b +u)Tyy < oo (by weak
duality). O

Proof of 2: Let uj,ug € dom(v) and let A € [0, 1]. By strong duality,

v(Aug + (1 = Nug) = min{ (b4 My + (1 — Nug)Tyly >0, ATy = ¢}
= min{A(b+u) Ty + (1 = N\)(b+u2)Tyly >0, 4Ty = ¢}
> dmin{(b+u1) yly > 0, ATy = ¢} + (1 = Nmin{(b + uz)"yly > 0,47y = ¢}
= Av(u1) + (1 — Nv(ug).

O
Proof of 3: By the results of Recitation 4, we have, for all u € dom(v),
v(u) = min {(b+u)"y|ATy = c,y > 0}
= min {(b + u) T yply1, . . ., yE are extreme points of {y|ATy = ¢,y > 0}} .
O
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