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Lecture 8

Lecturer: Damek Davis Scribe: Pamela Badian-Pessot

1 Recap

• Finished proving strong duality

• Theorem of Alternatives

Theorem 1 (Theorem of Alternatives) Let A ∈ Rm×n, b ∈ Rm. Then exactly one of the
following hold:

(a) ∃x ∈ Rn such that Ax ≤ b
(b) ∃y ∈ Rm such that AT y = 0, y ≥ 0, bT y < 0.

• Value function and sensitivity analysis:

We showed
v(u) = max{cTx|Ax ≤ b+ u}

is concave and piecewise linear.

2 Value Functions

Proposition 2 Suppose that v(0) exists and is finite. Then the following are equivalent:

(a) ∀u ∈ Rn, v(u) ≤ v(0) + uT y∗;

(b) y∗ ∈ argmin{bT y|AT y = c, y ≥ 0}.

Proof: Let x∗(u) ∈ Q(A, b+ u) satisfy v(u) = cTx∗(u).

“(a)⇒ (b)”: Let u∗ satisfy (a). We will prove that

1. y∗ ≥ 0

2. y∗
T

(b−Ax∗(0)) = 0

3. AT y∗ = c

Which implies that y∗ is dual optimal because

min{bT y|AT y = c, y ≥ 0} ≥ cTx∗(0) = (AT y∗)Tx∗(0) = bT y∗ ≥ min{bT y|AT y = c, y ≥ 0}.
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Proof of 1. (y∗ ≥ 0)
(∀i) −∞ < v(0) ≤ v(ei) because Ax∗(0) ≤ b ≤ b + ei. Thus, the inequality v(ei) ≤ v(0) + eTi y

∗

implies
−eTi y∗ ≤ v(0)− v(ei) ≤ 0,

i.e., yi ≥ 0.

Proof of 2. (y∗
T

(b−Ax∗(0)) = 0)
First, −∞ < v(0) ≤ v(Ax∗(0) − b) because x∗(0) ∈ Q(A, b + (Ax∗(0) − b)). Thus the inequality
v(Ax∗(0)− b) ≤ v(0) + (Ax∗(0)− b)T y∗ implies

0 ≤ (b−Ax∗(0))T y∗ ≤ v(0)− v(Ax∗(0)− b) ≤ 0.

So y∗
T

(b−Ax∗(0)) = 0.

Proof of 3. (AT y∗ = c)
Because x ∈ Q(A, b+ (Ax− b)), we have

(∀x ∈ Rn) cTx+ (b−Ax)T y∗ ≤ v(Ax− b) + (b−Ax)T y∗ ≤ v(0),

where the second inequality follows by assumption. Notice that

v(0) = cTx∗(0) = cTx∗(0) + (b−Ax∗(0))T y∗.

Thus f(x) = cTx+ (b−Ax)T y∗ is maximized at x∗(0). Therefore

0 = ∇f(x∗(0)) = c−AT y∗

so AT y∗ = c and y∗ is dual optimal.

“(a)⇐ (b)”: If y∗ is dual optimal then

v(0) = max{cTx|Ax ≤ b} = bT y∗.

If v(u) = −∞, then the inequality is trivial. Otherwise, because y∗ is dual feasible it follows that

v(u) = min{(b+ u)T y|AT y = c, y ≥ 0} ≤ (b+ u)T y∗ = v(0) + uT y∗.

2

Remarks

• We have shown that the set of optimal dual solutions is exactly −∂[−V ](0), i.e. the set of
supgradients of v at 0. (See homework 3).

• By shifting v, we have also shown that the subgradients of v at u are exactly the solutions of
min{(b+ u)T y|AT y = c, y ≥ 0}.

• When v happens to be differentiable at u, we can show that

∇v(u) = arg min{(b+ u)T y|AT y = c, y ≥ 0},

which implies that the dual minimizer is unique.
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• Clearly, piecewise linear functions are differentiable almost everywhere on their domains (the
almost everywhere part comes from ties in the expression for v). Notice that

dom(v) = {u|v(u) > −∞} ⊇ {u|u ≥ 0}.

Corollary 3
P (arg min{(b+ u)T y|y ≥ 0, AT y = c} is unique) = 1

where u ∼ Unif [0, 1]m.

3 Fourier Motzkin

Several times in this class we’ve made the assumption that, for linear maps L,

LQ(A, b) = {x|Ax ≤ b}

is a closed set. This is a nontrival fact. The next proof follows the proof from Jim Renegar’s
Excellent textbook [1].

Theorem 4 (Fourier Motzkin Elimination) Let A ∈ Rm×n, b ∈ Rm and L ∈ Rk×m. Then the
set

LQ(A, b) = {x|Ax ≤ b}

is a polyhedron.

Proof: Observation: It suffices to prove the result for a special kind of matrix, namely for P
that project onto the first n− 1 components of x.

n-columns

P =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 · · · · · · 1 0

 (n− 1)-rows

Why? First by induction, if we show that PQ(A, b) is a polyhedron, then we can repeatedly
remove any number of coordinates of x and still get a polyhedron. For example we could remove
xn, xn−1, . . . , xn−k and the resulting set is still a polyhedron.

Then write down the set

Q̄ =

{[
y
x

] ∣∣∣∣∣Ax ≤ b, Lx− y ≤ 0,−Lx+ y ≤ 0

}
.

Notice that
[
y x

]T ∈ Q̄ if, and only if, Ax ≤ b and Lx = y.
If we remove the last n + m coordinates of all vectors in Q̄, the resulting set is still a polyhe-

dron. Upon noticing that this set is LQ(A, b) =
{
Lx
∣∣∣Ax ≤ b} the conclusion of the theorem follows.
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So lets work with P which projects onto the first n− 1 coordinates. Let

I0 = {i ∈ {1, . . . ,m}|ain = 0}
I+ = {i ∈ {1, . . . ,m}|ain > 0}
I− = {i ∈ {1, . . . ,m}|ain < 0}

Then create a new matrix Ã ∈ Rm×n and a new vector b̃ ∈ Rm.

Ã =

 ã1...
ãm

 , b̃ =

 b̃1...
b̃m


where

ãi =

{
ai if i ∈ I0
ai
ain

if i ∈ I+ ∪ I−
, b̃i =

{
bi if i ∈ I0
bi
ain

if i ∈ I+ ∪ I−

Then ãi =
[
γi, τi

]
∈ R1×m with τi ∈ {1, 0}. Let x̄ = (x1, . . . , xn−1). Then Q(A, b) is described by

three types of inequalities.

γix̄+ 0xn ≤ b̃i i ∈ I0
γix̄+ xn ≤ b̃i i ∈ I+
γix̄+ xn ≥ b̃i i ∈ I−.

Then rearrange,

0 ≤ b̃i − γix̄ i ∈ I0
xn ≤ b̃i − γix̄ i ∈ I+
xn ≥ b̃i − γix̄ i ∈ I−.

A point x̄ is in PQ(A, b) if, and only if, ∃ xn ∈ R s.t

0 ≤ b̃i − γix̄, i ∈ I0

max
i∈I−
{b̃i − γix̄} ≤ min

i∈I+
{b̃i − γix̄}

i.e. if, and only if,
0 ≤ b̃i − γix̄, i ∈ I0

b̃k − γkx ≤ xn ≤ b̃i − γix̄, ∀k ∈ I−, i ∈ I+.

Thus x̄ ∈ PQ(A, b) if and only if it satisfies a system of linear inequalities. Thus, PQ(A, b) is a
polyhedron. 2

Corollary 5 Consider two polyhedra Q(A1, b1), Q(A2, b2) ⊆ Rn, then Q(A1, b1) + Q(A2, b2) and
Q(A1, b1)−Q(A2, b2) are polyhedra and therefore closed.

8-4



Remarks:

1. We implicitly used the fact that {AT |y ≥ 0, yT (b − Ax) = 0} was closed when proving the
normal cone identities.

2. Calvin explicitly used the closedness of the above set to prove Farkas’ Lemma.

3. Fourier-Motzkin elimination is a specific example of something called ”Quantifier elimina-
tion.” Used to prove certain classes of sets are closed under a variety of operations.
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