ORIE 6300 Mathematical Programming I September 5, 2016

Lecture 8

Lecturer: Damek Davis Scribe: Pamela Badian-Pessot

1 Recap

e Finished proving strong duality

e Theorem of Alternatives

Theorem 1 (Theorem of Alternatives) Let A € R™*" b e R™. Then exactly one of the
following hold:

(a) 3z € R™ such that Az <b
(b) 3y € R™ such that ATy =0,y >0, b7y <0.

e Value function and sensitivity analysis:

We showed
v(u) = max{c z|Az < b+ u}

is concave and piecewise linear.

2 Value Functions
Proposition 2 Suppose that v(0) exists and is finite. Then the following are equivalent:
(a) Yu € R", v(u) < v(0) +uly*;
(b) y* € argmin{bTy|ATy = ¢, y > 0}.
Proof:  Let z*(u) € Q(A, b+ u) satisfy v(u) = clz*(u).
“(a) = (b)”: Let u* satisfy (a). We will prove that
1. y* >0
2. y* (b— Az*(0)) =0
3. ATy = ¢

Which implies that y* is dual optimal because

min{b’y|ATy = ¢, y >0} > T2*(0) = (ATy*)T2*(0) = bTy* > min{bTy|ATy = ¢, y > 0}.
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Proof of 1. (y* > 0)
(Vi) —oo < v(0) < v(e;) because Az*(0) < b < b+ e;. Thus, the inequality v(e;) < v(0) + el'y*
implies
—el'y* < v(0) — v(e;) <0,

i.e., Yi > 0.

Proof of 2. (y* (b— Az*(0)) =0)
First, —oo < v(0) < v(Az*(0) — b) because z*(0) € Q(A,b+ (Az*(0) — b)). Thus the inequality
v(Az*(0) — b) < v(0) + (Az*(0) — b)Ty* implies

0< (b— Az*(0)Ty* < v(0) — v(Az"(0) — b) < 0.

So y*' (b — Az*(0)) = 0.

Proof of 3. (ATy* = ¢)
Because z € Q(A,b+ (Az — b)), we have

(Vz € R"Y)  clz+ (b— Az)Ty* <v(Az —b) + (b— Az)Ty* < v(0),
where the second inequality follows by assumption. Notice that
v(0) = cTz*(0) = T x*(0) + (b — Az*(0))Ty*.
Thus f(z) = Tz + (b — Az)Ty* is maximized at 2*(0). Therefore
0=Vf(z*(0)) =c— Ay

so ATy* = ¢ and y* is dual optimal.

“(a) <= (b)”: If y* is dual optimal then
v(0) = max{c’ z|Az < b} = bTy".
If v(u) = —o0, then the inequality is trivial. Otherwise, because y* is dual feasible it follows that

v(u) = min{(b+u)"y|ATy = ¢, y > 0} < (b+u)yx = v(0) + uTy".

Remarks

e We have shown that the set of optimal dual solutions is exactly —9[—V](0), i.e. the set of
supgradients of v at 0. (See homework 3).

e By shifting v, we have also shown that the subgradients of v at u are exactly the solutions of
min{(b +u)"y[ATy = ¢, y > 0}.

e When v happens to be differentiable at u, we can show that
Vo(u) = argmin{(b + )yl ATy = ¢, y > 0},

which implies that the dual minimizer is unique.
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e Clearly, piecewise linear functions are differentiable almost everywhere on their domains (the
almost everywhere part comes from ties in the expression for v). Notice that

dom(v) = {ulv(u) > —oo} D {ulu > 0}.

Corollary 3
P(argmin{(b+u)yly >0, ATy = c} is unique) = 1

where u ~ Uni f[0, 1]™.

3 Fourier Motzkin
Several times in this class we’ve made the assumption that, for linear maps L,
LQ(A,b) = {a| Az < b}

is a closed set. This is a nontrival fact. The next proof follows the proof from Jim Renegar’s
Excellent textbook [1].

Theorem 4 (Fourier Motzkin Elimination) Let A € R™*" b€ R™ and L € R¥*™. Then the
set
LQ(A,b) = {z|Ax < b}

s a polyhedron.

Proof: Observation: It suffices to prove the result for a special kind of matrix, namely for P
that project onto the first n — 1 components of z.

n-columns
1 0 --- 00
o 1 --- 00
pP=1. . _ (n — 1)-rows
0 -« -~ 10

Why? First by induction, if we show that PQ(A,b) is a polyhedron, then we can repeatedly
remove any number of coordinates of x and still get a polyhedron. For example we could remove
Tpy Tp—1,---,Tn_k and the resulting set is still a polyhedron.

Then write down the set

o-{l]

Notice that [y x]T € Q if, and only if, Az < b and Lz = . )
If we remove the last n + m coordinates of all vectors in @), the resulting set is still a polyhe-
dron. Upon noticing that this set is LQ(A,b) = {Lm‘Aw < b} the conclusion of the theorem follows.

A$§b,Lx—y§0,—Lw+y§0}.
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So lets work with P which projects onto the first n — 1 coordinates. Let

Iy = {ie{1,...,m}|ai =0}
I, = {ie{l,...,m}am >0}
I = {ie{l,...,m}am <0}

Then create a new matrix A € R™*" and a new vector b € R™.

a b1
A= , b=
Gm b,
where
6 — a; ifi € Iy B': b; if i € Iy
& dfierurl’ ' Lfiel, Ul

Then a; = [fyi,n} € RY™™ with 7; € {1,0}. Let # = (21,...,2,_1). Then Q(A,b) is described by
three types of inequalities.

Yx 4+ 0x, < i)z 1€ I
YT AT, < BZ 1€ I+
YT+ Ty > BZ 1e1_.
Then rearrange,
0 < i)z — YT 1€ I()
T, < bi—vz i€l
Ty > l;i—’yii: 1el_.

A point Z is in PQ(A,b) if, and only if, 3 z,, € R s.t
0<b—~z, i€l
b; — %} < min{b; — ;7
max{b; — %T} < angl{ YT}

i.e. if, and only if, 3
0 < b — vz, i€l
by — WE < xp <bi —viZ, Vkel , iel,.
Thus Z € PQ(A,b) if and only if it satisfies a system of linear inequalities. Thus, PQ(A,b) is a
polyhedron. O

Corollary 5 Consider two polyhedra Q(A1,b1), Q(Az,b2) C R™, then Q(A1,b1) + Q(A2,b2) and
Q(A1,b1) — Q(Az,b2) are polyhedra and therefore closed.
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Remarks:

1. We implicitly used the fact that {AT]y > 0,47 (b — Az) = 0} was closed when proving the
normal cone identities.

2. Calvin explicitly used the closedness of the above set to prove Farkas’ Lemma.

3. Fourier-Motzkin elimination is a specific example of something called ” Quantifier elimina-
tion.” Used to prove certain classes of sets are closed under a variety of operations.
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