ORIE 6300 Mathematical Programming I September 22, 2016

Lecture 10

Lecturer: Damek Davis Scribe: Qinru Shi

1 Last Time

e We shifted to the standard form (A € R™*"™).

min 'z max bly
st. Ax=b st. ATy <ec
x>0

Also, P(A,b) = {z | ATz = b,z > 0}.
e Assumption: From now on, we assume that the rows of A are linearly independent (m < n).

e Proposition 1 For P(A,b) = {z | ATz = b,z > 0}, T € P(A,b) is a vertezx if and only if
the columns corresponding to positive components of T are linearly independent.

e Definition 1 A set B of m columns of A (A € R™*™) is a basis if rank(Ap) = m (Ap is
invertible).

e Proposition 2 Every verter of P(A,b) is a basic feasible solution corresponding to some
basis.
2 Verifying optimality

Given a vertex T € P(A,b), we want to find a “verifying 3” which we use to check whether T is
optimal. Clearly, any 7 should satisfy complementary slackness, i.e.

z; >0 <— (ATy)Z = ¢;.

In order to find ¥, we first prove the following proposition.

Proposition 3 Suppose T € P(A,b) has m non-zero components corresponding to basis B. Then,
7 is optimal if and only if there exists y € Q(AT, c) such that ALy = cp.

Proof: By theorem from previous lectures, we know that T is optimal if and only if
—CcE NP(A,b)(E) = {é ’ El:l; € Q(AT76)7 s.t. ET(é - AT?)) = 0}7
which is then equivalent to the condition

Jye QAT ¢c) st. x;>0= (ATy); = ¢;.
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Note that x; > 0 if and only if ¢ € B, so the last condition can be translated into

Jy € Q(AT ¢) st. ALy =cp.

We also have the following definition regarding non-degeneracy.

Definition 2 A vertexT € P(A,b) is called non-degenerate if it has exactly m nonzero components
and those components correspond to some basis B.

For each non-degenerate Z with basis B, we will try to find a y € Q(AT, ¢) such that ALy = cp.
Then, (¢ — ATy); = 0 when i € B. For simplicity of notation and computation, we create the
following definition.

Definition 3 For any y € R™, the reduced cost ¢ with respect to y is ¢ =c — ATy.
Lemma 4 For all z € P(A,b), range(A”) + Np( ) (%) = Np(ap) ().

Proof: Clearly, Np(ap)(z) C range(AT) + Npap) () because 0 € range(A”). On the other
hand, let ATyy be any element in range(A”) and —¢ be any element in Np(ap)(z). Then, there
exists ¢ such that AT < é and 27 (¢ — ATj) = 0. Tweaking the equations a bit, we get

AT (g —yo) <e— ATy

and
a6 = ATyo = AT (5 — ) = 0.
Thus,
ATyg — ¢ € Np(ay)(@),
which means that range(A”) + Npap)(®) € Npap) (). O

A simple example to illustrate Lemma 5 is when A = [1,1], b = 1 and ¢ € R?. P(A,b) in this

case is a line segment connecting (1,0) and (0,1). If ¢ is in Np(4y), then c+ Eﬂ is still in Np(a p)-

=
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From Lemma 5, we can easily reach the following conclusion.

Lemma 5 Consider the two LPs

(LP1)  min 'z (LP2) min ¢z
s.t. Ar=b> s.t. Ar=b>
x>0 x > 0.

These LPs have the exact same optimal solution.
Proof: ~ We know that T solves (1) if and only if —c € Np(4)(Z). By Lemma 5, we have
Np(ap) (@) = range(A”) + Np(ap)(T),

0 ¢ € Np(ap)(7) if and only if ¢ = —c+ ATy € Np(ap)(T), which equivalent to T being an optimal
solution of (2). O

We also have the following observation regarding .
Observation 1 7€ Q(AT,¢) +— Aly<c +<= c=c— ATy >0.

Using the conclusions above, we can now work with ¢ instead of c.

3 Some Simplex Method-type Computations

Consider a basis B and the new linear program with reduced cost ¢.

(LP2) min ¢’z
st. Az =10
x > 0.

We reorganize the vectors and matrices so that x = [;:B] ,A=[Ap Ay] and ¢ = [EB] . Note that
N N
rzg >0, zxy =0 and

[Ap Ay] [ﬂ =b.
TN
Multiplying through by A]g,l, we convert LP2 into
min 5%1‘3 + Ezj\}x]\/
s.t. Ixg+ AglANxN = Aglb
x> 0.
Now set y = A]_BTCB and ¢ =c— ATy. Then, ¢g = cg — AgABTcB = 0. Our problem becomes
min E%:UN
st. xp+ At Avey = AG'D
xz > 0.
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We can further simplify the problem by discarding xg. Then, the LP looks like

(LP3) min elan
st. AptAnzn < AG'b
TN Z 0.

If y € Q(AT,¢c), then ¢ = ¢ — ATy > 0. Because Eﬁx]v > 0, the optimal value of the reduced

problem is bounded below by 0. Thus, if Aglb > 0, then 2y = 0 is feasible and €70 = 0, so zy = 0
AG'

is an optimal solution. In the original problem, x = [ 0

] is optimal.

Now suppose B is an arbitrary basis. Let xxy =0 and zp = Aglb. Based on the analysis above,
we devise the following simplex scheme for finding the optimal solution:

o If A,}lb >0, then x = [333

} is feasible and a vertex.
TN

e If in addition, x has m nonzero components, then solve y = A]_BICB and compute reduced

cost ¢ with respect to y.
e If ¢ > 0, then x and y are optimal by Proposition 3.

e Failure Case: If there exists ¢ such that ¢; < 0, then j € IV since cg = 0. Increase x; and
we get an improvement in the objective value of LP3. Then, all entries of x are zero except
for z ;) which correspends to x;. Note that we can increase z ;) as long as

(AEIAN)Z’N(]’):L']’ < (A5'b);

for all 3.
We have assumed that z = Aglb is feasible so Aglb > 0.

If (AEIAN)Z-N(]-) < 0 for all 7, then the constraint is never violated as x; — oo, and ¢jz; = —o0
as x; — oo. Therefore, in this case, LP is unbounded.

. . —1 . (A_lb)l
If there exists ¢ such that (Ap" An)in(j) > 0, then we cannot improve z ;) over (Agl‘fm‘
Define
U= ArgIIL, (Al Ay eS0T AT 4y
(A5 AN)in)>0 (ABIAN)iN(j)
and
B ) L
(A5"AN)ing

Hence, we can increase x; to € and get a new point Z. The new point has a strictly smaller
cost E]TV:Z‘N than 6]TV:UN =0.

Now we update zp through the equation

ip=Az'b— A Anin.
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Zp > 0 by construction. Clearly, & = [;B} satisfies Az = b.
N

Notice that 2 () = 0 by construction. Thus, we can update our basis to
B=(B\{i"}) U{j}

To summarize, the main update step works as follows:

— If¢ #0, find j, s.t. ¢ <0. ( € N).
— Check for unboundedness: If (A;AN)Z-N(]-) < 0 for all 4, then LP is unbounded.
— Ratio test: Compute

<%

A,
i* = arg min ,(13—)
(A5 AN)in () >0 (A AN)in()
and
(Ap'b)s-
E="——g "
(A5"AN)iNG)

— Update x: z; < € and zg « Aglb — AE;lANxN.

— Update basis: B < (B \ {i*}) U{j}. We say that j enters the basis and i* leaves the
basis.
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