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Lecture 11

Lecturer: Damek Davis Scribe: Lijun Ding

1 From last class

Last time, we introduced the simplex method. In this class we are going to prove that the simplex
method indeed works. To be clear about notation, let us consider the primal and dual linear
program below and the corresponding terminology. Consider the standard primal and its dual
linear programs:

min cTx

s.t. Ax = b

x ≥ 0

max yT b

s.t. AT y ≤ c.

A basis B is the set of indices of m linearly independent columns of A. Then define

AB = (Ai), for i ∈ B

Similarly we have xB and cB. Let N denote the set of indices of columns not in B, so that we also
have AN ,xN ,cN . We write the constraints in primal as x ∈ P (A, b) and the constraints in the dual
as y ∈ Q(AT , c).

We now give the definition of nondegeneracy and the proposition we proved last time related
to it in testing optimality.

Definition 1 A vertex x of P (A, b) is called nondegenerate if x has exactly m nonzero elements.

Proposition 1 Suppose x̄ ∈ P (A, b) has m nonzero components corresponding to a basis B. Then
x̄ is optimal if and only if, there exists y ∈ Q(AT , c) such that AT

By = cB.

In each step of simplex, we consider y = (AT
B)−1cB, the verifying y. The above proposition

shows that if y is dual feasible (i.e. AT y ≤ c) then x is an optimal solution. In the case that y is
not dual feasible we introduced the concept of reduced cost:

Definition 2 For any y ∈ Rm, the reduced cost c̄, with respect to y, is c̄ = c−AT y.

The following lemma and linear programs we discussed last time expalin why the reduced cost
might be considered.

Lemma 2 Let x ∈ P (A, b). Then Range(AT ) +NP (A,b)(x) = NP (A,b)(x).
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Note that for our veryfying ȳ = (AT )−1cB and reduced cost c̄, the following equivalence holds,

AT ȳ ≤ c ⇐⇒ c−AT y ≥ 0 ⇐⇒ c̄ ≥ 0.

Starting from Lemma 2, the following program we discussed last time are equivalent to the
primal in the sense the solution x can be transoformed back and forth easily. We start with the
program with same constraints as our primal but different objective c̄Tx.

min c̄Tx

s.t. Ax = b

x ≥ 0.

Multiplying A−1
B on the both sides of the equality constraints, we get

min c̄TBxB + c̄TNxN

s.t. IxB +A−1
B ANxN = A−1

B b

x ≥ 0.

Last time we noticed that c̄B = 0. Set Ā = A−1
B AN ,b̄ = A−1

B b. Then we have

min c̄TNxN

s.t. IxB + ĀxN = b̄

x ≥ 0.

By setting xB = b̄− ĀxN , then we turn the primal LP problem into the following form:

min c̄TNxN

s.t. ĀxN ≤ b̄
xN ≥ 0.

Let us now summarize the simplex-type calculations we did last time. Recall that the goal of
those calculations was to find an optimal solution or update our basis B.

• Start with a basisB and its corresponding vertex assumed to be nondegenerate x =

[
xB
xN

]
, xB =

A−1
B b, xN = 0 (Note: Ax = ABxB +ANxN = b).

• Compute veryfying y = A−T
B cB.

• Case I: Suppose AT y ≤ c, then x is primal optimal by Proposition 1.

• Case II: Suppose AT y 6≤ c. Then c̄ 6≥ 0 and ∃j ∈ {1, . . . , n} s.t. c̄j < 0.

• In the second case, we need to update our basis B as the ”verifying y = (AT
B)−1cB ” does not

work.

• The index j we find above satisfies j ∈ N because c̄B = cB −AT
BA

−T
B y = cB − cB = 0.
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• Let’s update x to x̂( the new iterates) by increasing xN(j) = 0 to some ε > 0. Here N(j)
means the index of jth entry of x in xN .

• Can increase the value as long as

∀i ∈ {1, 2, . . . ,m}, (A−1
B AN )iN(j)xN(j) ≤ (A−1

B b)i

(Note that our x is a vertex of P (A, b) and so A−1
B b = xB ≥ 0)

• We Let Ā = A−1
B AN and b̄ = A−1

B b.

• If ∀i, ĀiN(j) ≤ 0, then we can take xj → +∞. Since c̄B = 0 as shown above, c̄Tx = c̄TNxN =

c̄TN(j)xN(j) → −∞ as xN (j) → ∞ and ĀN(j) ≤ 0 ≤ b̄. So the objective of the reduced cost

program in Lemma 2 is unbounded below by setting x =

[
xB − tĀN(j)

0

]
+ tej where ej is the

vector with 1 at jth entry and 0 otherwise.

• if ∃i s.t. ĀiN(j) > 0, then we set i∗ = arg mini:ĀiN(j)>0
b̄i

ĀiN(j)
and ε = b̄i∗

Āi∗N(j)
.

• For our new iterates x̂ =

[
x̂B
x̂N

]
, we set x̂j = ε, x̂k = 0,∀k ∈ N/{j} and x̂B = b̄− Āx̂N .

• Observe that i∗ ∈ B because it corresponds to one of the rows of Ā = A−1
B AN , which in turn

is one of the columns of AB. It is the index i∗ of b̄ = x̄B

Summarize the above idea as the following steps:

If c̄ � 0, ∃ j s.t. cj < 0, j ∈ N .
(Check for unboundedness)

If Āij ≤ 0, ∀i, then primal LP unbounded.
(Ratio Test)

Compute ε = mini:Āij>0

b̄i
Āij

Increase xj by ε
Let i∗ be the i that attains the minimum. Since xB = b̄− ĀN (εej)⇒ xi∗ = 0, for i∗ ∈ B.

(Update basis)
B̂ ← B ∪ {j} − {i∗}
We say j enters the basis, i∗ leaves the basis

The process of switching bases is called ”pivoting”. Repeatedly doing this gives us an algorithm
for solving LPs, called the simplex method, which is due to George Dantzig.

2 Some details

Let x̂ be the new solution found by the method described above, i.e. x̂j = ε, x̂k = 0, for all
k ∈ N, k 6= j, and x̂B = b̄ − Āx̂N . Now we want to prove that the simplex method, under some
mild conditions, leads to the optimal solution. In order to do this we are going to show follwoing
4 claims:

11-3



1. (Objective decrease) cT x̂ ≤ cTx i.e. the new solution is not worse than the old solution;

2. (Make progress) If x is nondegenerate, then ε > 0, i.e. we make progress in our algorithm;

3. (Basis) The updated basis B̂ after a pivot is indeed a basis;

4. (Uniqueness) x̂ is the unique solution corresponding to B̂.

Claim 3 cT x̂ ≤ cTx

Proof: Since we already know c̄TB = 0, xN = 0, x̂j = ε, x̂k = 0, for all k ∈ N, k 6= j,

c̄T x̂ = c̄TBx̂B + c̄TN x̂N = c̄jε ≤ 0 = c̄TBxB + c̄TNxN = c̄Tx

where the inequality holds because c̄j < 0 and ε ≥ 0. Now cT x̂ = (c̄ + AT y)T x̂ = c̄T x̂ + bT y ≥
c̄Tx+ bT y = (c̄+AT y)Tx = cTx since both x̂, x are feasible. 2

This means that at least our solution value does not increase by applying the simplex method,
but do we in fact make progress? In fact, if ε > 0, then the inequality holds strictly: c̄Tx < cTx.

Claim 4 If x is nondegenerate, then ε > 0 and thus c̄Tx < cTx.

Proof: Since x is a nondegenerate basic solution, we know that xj > 0 for all j ∈ B, i.e. xB > 0.
Recall

xB = A−1
B b = b̄ > 0,

then
b̄i
Āij

> 0

for all i with Āij < 0. Therefore ε > 0. 2

Let us for now assume that all basic feasible solutions are nondegenerate. We will
treat the case of degenerate solutions in a later lecture. So far, we know that we make progress
with the simplex method, but what do we get after making a pivot?

Claim 5 The set B̂ is a basis.

Proof: By definition of a basis, B̂ is a basis if and only if AB̂ has full rank. To get AB̂ we
substituted the jth column of A for the i∗th column into AB.

AB̂ = [ old columns|Aj | old columns ]

= AB


1 0 . . .
0 1
...

...
. . .

0 0
0 0 . . .

∣∣∣∣∣∣∣∣∣∣∣
A−1

B Aj

∣∣∣∣∣∣∣∣∣∣∣

. . . 0 0
0 0

. . .
...

...
1 0

. . . 0 1



= AB


1 0 . . .
0 1
...

...
. . .

0 0
0 0 . . .

∣∣∣∣∣∣∣∣∣∣∣

Ā1j

Ā2j
...

Ā(n−1)j

Ānj

∣∣∣∣∣∣∣∣∣∣∣

. . . 0 0
0 0

. . .
...

...
1 0

. . . 0 1

 ,
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recalling that Ā = A−1
B AN . B is a basis so AB is non-singular. In order to show that AB̂ is

non-singular we need to show that the big matrix on the righthand-side is non-singular. But we
chose i∗ in the ε ratio such that Āi∗j > 0 and therefore the matrix is non-singular and B̂ is a basis.

2

Claim 6 The new solution x̂ is the basic feasible solution corresponding to B̂.

Proof: We want to show that x̂ is the solution we get by setting xN̂ = 0, xB̂ = A−1

B̂
b.

Note x̂k = 0 for all k /∈ B̂ (i.e. for all k ∈ N − {j} ∪ {i∗}). We have

Āx̂N + Ix̂B = Ā(εej) + I(b̄− Ā(εej)) = b̄

Recall that Ā = A−1
B AN , b̄ = A−1

B b, and therefore

AN x̂N +ABx̂B = b

and we get Ax̂ = b, x̂ ≥ 0, so x̂ is a feasible solution with corresponding basis B̂. 2

3 Some Issues to Deal with

There are some issues we have to address when using the simplex method. We will go over these
issues in the coming lectures.

1. About running time:

(a) How much work is involved in every pivot step?

(b) How many pivots do we need to reach the optimal solution?

(If all solutions encountered are nongenerate, then from Claim 2, we know that each

basis encountered is unique ⇒ # of pivots ≤ # of bases=

(
n
m

)
)

2. Starting point: We assume that we have a feasible solution to begin our algorithm, but how
do we find such a initial feasible solution?

3. How can we guarantee progress towards optimality, if x is degenerate?

4. Assume we are in the case where c̄ � 0, i.e. there exists j such that cj < 0. Which one of
these cj ’s do we choose?

(a) j that gives the most improvement?

(b) First j such that c̄j < 0?

(c) j such that c̄j most negative?
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