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1 Example of the Simplex Method

We introduced the simplex method in the last class. Consider a standard form LP and its dual:

min cTx max bT y

s.t. Ax = b s.t. AT y ≤ c
x ≥ 0

Given a basic feasible solution x with corresponding basis B, we first compute the verifying y = (AT
B)−1cB

and the reduced cost c̄ = c − AT y. Recall that c̄B = 0, xN = 0 and xB = A−1
B b. If c̄ ≥ 0, x is an optimal

solution. Otherwise, let b̄ = A−1
B b, Ā = A−1

B AN and turn the original primal LP into the following equivalent
problem:

min c̄TNxN

s.t. ĀxN ≤ b̄
xN ≥ 0

Pick up j ∈ N such that c̄j < 0 and do the following steps:

• Check for unboundedness: If Āij ≤ 0 for all i, then the LP is unbounded.

• Ratio test: Compute

ε = min
i:Āij>0

b̄i
Āij

.

Let i∗ ∈ B be the i achieving the minimum. Construct a new basic feasible solution by setting x̂j ← ε,
x̂k ← 0,∀k ∈ N − {j}, and x̂B ← b̄− Āx̂N .

• Update basis: The new basis B̂ ← B ∪ {j} − {i∗}.

Now a better basic feasible solution x̂ with associated basis B̂ is generated. By iterating through the steps
above, we will finally find an optimal solution or assert that the problem is actually unbounded. In some
sense, the simplex method is a local search. We only swap one basic column and non-basic column during
each iteration.

Here is a concrete example of simplex method.

Example 1 Solve the following LP:

min −x1 + 2x2 − x3

s.t. x1 ≤ 4

x2 ≤ 4

x1 + x2 ≤ 6

−x1 + 2x3 ≤ 4

x1, x2, x3 ≥ 0

The feasible region of this problem is visualized in Figure 1.
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Figure 1: 3-D Diagram of the Feasible Region

To apply the simplex method, convert it to a standard form problem by adding slack variables:

min −x1 + 2x2 − x3

s.t. x1 + x4 = 4

x2 + x5 = 4

x1 + x2 + x6 = 6

−x1 + 2x3 + x7 = 4

x1, . . . , x7 ≥ 0

Rewrite the constraints in matrix form:
1 0 0 1 0 0 0
0 1 0 0 1 0 0
1 1 0 0 0 1 0
−1 0 2 0 0 0 1



x1

x2

...
x7

 =


4
4
6
4


x ≥ 0

To start the simplex method, an initial basic feasible solution is needed. Since the last four columns in
the coefficient matrix form an identity matrix, it is convenient to regard them as a basis first and check the
feasibility of the basic solution corresponding to it. Now B refers to last four columns, N refers to first three
columns, and

AB = I, xN = 0, xB = A−1
B b =


4
4
6
4

 .
It is a feasible solution so we could begin the iteration based on it.
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Compute

y = (AT
B)−1cB = I · 0 = 0, c̄ = c−AT y =



−1
2
−1
0
0
0
0


.

x is not optimal because c̄ � 0. Since c̄1 < 0, increasing x1 will decrease the objective function. Now

b̄ = A−1
B b =


4
4
6
4

 , Ā1 = A−1
B A1 =


1
0
1
−1

 .
So the problem is not unbounded at this point. From ratio test ε = 4, we can increase x1 from 0 to 4 without
violating the constraints. At the same time x4 becomes 0, so 1 enters the basis and 4 leaves it. Now B refers
to column {1, 5, 6, 7} and N refers to column {2, 3, 4}.

If AB = I is maintained in the next iteration, our calculation would be greatly simplified. By doing
elementary row operations, we could get a unit vector in the first column while keeping the feasible region
of the original problem untouched. The equivalent new constraints are

1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 −1 0 1 0
0 0 2 1 0 0 1

x =


4
4
2
8

 .
Our new basic feasible solution is

[
4 0 0 0 4 2 8

]T
.

To simplify the problem further, we wish the objective function only contain non-basic variables to
make cB = 0. By substituting the first constraint x1 = 4 − x4 into the objective function, it becomes
−4 + 2x2 − x3 + x4.

Now compute

y = (AT
B)−1cB = I · 0 = 0, c̄ = c−AT y =



0
2
−1
1
0
0
0


.

x is not optimal because c̄ � 0. Since c̄3 < 0, increasing x3 will decrease the objective function. Now

b̄ = A−1
B b =


4
4
2
8

 , Ā3 = A−1
B A3 =


0
0
0
2

 .
So the problem is not unbounded at this point. From ratio test ε = 4, we could increase x3 from 0 to 4
without violating the constraints. At the same time x7 becomes 0, so 3 enters the basis and 7 leaves it. Now
B refers to column {1, 3, 5, 6} and N refers to column {2, 4, 7}.
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Diving last row by 2 to keep AB = I, we get
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 −1 0 1 0
0 0 1 1/2 0 0 1/2

x =


4
4
2
4

 .
Our new basic feasible solution is

[
4 0 4 0 4 2 0

]T
.

Recall our old objective function −4 + 2x2 − x3 + x4. Since x3 is now in the basis, the corresponding
coefficient needs to be zero. Substitute x3 = 4 − 1/2x4 − 1/2x7 (which we get from the fourth constraint)
into the objective function. From this we get our new (reduced) objective function −8+2x2 +3/2x4 +1/2x7.

Since c̄ ≥ 0 we are finished with simplex. The optimal solution x∗ is
[
4 0 4 0 4 2 0

]T
.

2 Finding an Initial Basic Feasible Solution

We now start addressing various issues with the simplex method. The first question is how we get an initial
basic feasible solution with associated basis. The idea for achieving this is to modify the LP such that there
is an easy initial basic feasible solution, and solving the modified LP gives some (not necessarily optimal)
basic feasible solution to the original LP.

Without loss of generality we can assume b ≥ 0, since if some bi < 0, we multiply that constraint by −1
(this is okay since there are only equality constraints). Consider the following modification to the original
problem

min eT z

s.t. Ax+ Iz = b

x ≥ 0

z ≥ 0

where e =
[
1 1 . . . 1

]T
is a column of ones. The z variables are called artificial variables, and the x’s

are called real variables. Define

A′ =
[
A I

]
, x′ =

[
x
z

]
so the constraints of the modified LP can be written as A′x′ = b, x′ ≥ 0.

Now we could run the simplex method on this modified LP, starting with the basis corresponding to z
variables. Then x = 0, z = b ≥ 0 is a basic feasible solution.

The simplex method can have one of two possible results (note that the modified LP is never unbounded:
since z ≥ 0, the objective function is bounded from below by 0).

• Case 1: The value of modified LP is non-zero. Then there are no feasible solutions to the original LP.

• Case 2: The value of modified LP is zero. If we find a solution (x, z) such that eT z = 0. Then x is
feasible for the original LP. We still need to ensure that x is actually a basic solution to the original
LP. There are two subcases:

– The Good Case: All artificial variables are non-basic. Then A′B = AB , so that x′B = (A′B)−1b,
x′N = 0 is feasible for A′x′ = b, so xB = A−1

B b, xN = 0 is a basic feasible solution for Ax = b. We
can now run the simplex method for the original LP, starting with the basis B.

– The Bad Case: Some artificial variables are in the basis. The idea to deal with this case is to
swap the artificial variables out of the basis. We will talk about it next time.
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