ORIE 6300 Mathematical Programming I October 18, 2016

Lecture 16
Lecturer: Damek Davis Scribe: Matt Hin

1 Last Time:
Theorem 1 (KM Theorem) Suppose N : R" — R" is 1-Lipschitz continuous, i.e. (Vx €

R")(Yy € R")||[Nz — Ny|| < ||z — yl|, that Fix(N) # 0, and X\ € (0,1). Then, given any 2° € R"
the sequence {z*}ren generated by the KM iteration

= Ny2F = (1= A)2F + AN

converges to an element of Fix(N).

2 The Method of Alternating Projections (MAP)

Suppose
z* € argmin {cTac | Az = b,z > 0} and (y*,s") € argmax {bTy | ATy +s=1c,5> O} .
Using strong duality, these inclusions are equivalent to
Az* =b; ATy*+s=¢ dar=bly* =0, 2*>0; s >0.

Define the set C; as the solutions to

A 0 Of [z*
0 AT 1| |y*| = |c
' =T o] | s 0

and the set Co = {(z,y,s) € R™™2" | 2,5 > 0}. We have just shown that LPs can actually be cast
as a feasbility problem:

Theorem 2 The pair (z*,y*) is primal-dual optimal if, and only if, there exists s* € R>q such
that (z*,y*,s*) € C1 N Cy.

Now, let’s take a step back and consider two closed, convex sets C7,Cy C R". Let’s solve,
x € (1 N Cs by forming an operator N : R” — R™ with fixed points C; N Cs. To apply the KM
theorem, the operator N must be 1-Lipschitz continuous.

Definition 1 We call a 1-Lipschitz mapping N : R®™ — R"™ nonexpansive.

We will often find the following identity useful:

16-1



Lemma 3 For all a,b € R" and A € R, we have
11 = X)a+20]* = (1= Ml + X[bl[> = A(L = A)[la — b]]*.

Before we construct the operator IV, we prove a Lemma which shows that projection mappings
satisfy a property slightly stronger than nonexpansiveness.

Lemma 4 Let C CR" be a closed convex set. Then (Vx € R™)(Vy € R™)
1Pc(z) = Pe)|* < llz = yll* = [z — Pe(x)) = (y — Po(y)]l,  (firm non-expansiveness)

In particular, Po and 2P¢ — I are nonexpansive.
Proof:  Recall that « — Po(z) € No(Pe(z)) and y — Po(y) € No(Pa(y)), so
(x — Po(z), Po(y) — Po(z)) <0 and  (y — Pe(y), Po(z) — Pe(y)) < 0.
Add these inequalities to get
0> ((z — Po(x)) — (y — Po(y)), Pe(y) — Po(a))
= % (=llz = yl* + Iz = Pe(@)) = (y = Pe@))|* + | Pe(x) = Po(y)|?),  law of cosines
= [|Po(x) = Pe)|? < |z = yl” = (& = Po()) = (y — Pe))]1*.
Thus P is firmly nonexpansive. Finally, by Lemma 3, we have
I(2Pc(z) — 2) — (2Pc(y) — y)I* = [12(Pe(z) — Po(y) + (1 = 2)(z — y)|1%,
=2|Pe(x) = Po(y)l® + (1 = 2)la — y[* = 2(1 = 2)||(Pe (@) — 2) — (Pe(y) — 9)II%
<2z~ ;/II2 —l(& = Po(@)) = (y = Pe@)IIP] = = = ylI* + 2| (z — Po(x)) — (y — Po(y))|%,
= [l —yll*.

0

Corollary 5 Let C1,Cy C R™ be closed nonempty convexr sets. Then N = %P@Pcl - %I 18
nonerpansive.

Proof:  Recall that || - |2 is a convex function, so
1 R N S 1 2 2 2
Yat o) <l i e Sl ol < 2+ ol

Now let z,y € R™.
1
ST = Pe, Pey) (@) = (I = Pey Pey) ()|

= %H(I — Poy)(x) — (I = Pey)(y) + (Pey — PeyPey)(x) — (Poy — PoyPo) ()|,

< || = Poy)(@) = (I = Poy )W) + |(Pey — PoyPoy) (@) — (Poy — PeyPey) ()7,
< llz = ylI* = [1Pey (2) = Pe, )1 + [1Pey (x) = Pey W1 = 1Py Pey (x) = Pey Py ()1,
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where we apply Lemma 4 twice to get the last inequality. Thus,

1
| Pe, Pey (%) — Po, Py (y)|I” + gH(I — P, Poy) () = (I = Pe,Poy) ()| < llo =yl

Therefore, by Lemma 3, we have

)

ING) = NP = [ (PesPes @) = Pese () = o

3 1 3
= §||PC2PC1 (‘T) - PCQPC1 (y)H2 - 5”'7; - yH2 + ZH(I - PC2PC1)($) - (I - PCQPCI)(y)”27

1 :
<5 Ble—yl* = llz = wl],

= [z —y[*
O
We’ll use the following simple fact.
Exercise 1 Fiz(Pg) =C.
Proposition 6 Let C1,Cy C R™ be closed, convex sets such that Cy N Co # (). Then
. (3 1
C1 N Cy = Fia(Pe, o Po,) = Fix §P02 o Po, — 5[ .
Proof: N = Pg, o Pg, is nonexpansive by Lemma 4, and the fact that the compositions of

nonexpansive maps are nonexpansive. Now, let € C; N Cy. Then Pg, (z) = z and Pg,(z) = x.
Thus, (P, o Po,)(z) = = and = € Fix(N).
Now suppose, x € Fix(/N). Then

x = Pc, o Poy(w),
and so x € Cy. We consider three cases:
1. Suppose Pg,(x) € Cy. Then © = Pg, Po,x = Po,x, so v € C; N Co.
2. Suppose x € C;. Then z € C7; N Cs.
3. Suppose z ¢ C1 and P,z ¢ Cy. Then Yy € C1 N Cy, we have
|2 = yll = || Py Poy (2) — e, Py (),

<”PC1(37)_P01(y)H7 (Pcl(y):yECQ and PC1(37)¢027
<|lz—yll, (x¢C1 and yeC1NCy).

This is a contradiction! So z € Cy N Cs.

The equality Fix(Pc, Pe, ) = Fix(3 Pe, Po, —31) follows because Po, Po, = 2 (3P, Po, + (1 — 3)I)+
1

ir,

3

O
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Theorem 7 Suppose C1,Cy C R™ are closed convex sets such that C1NCq ¢ (). Let 20 € R™. Then
the Method of Alternating Projections

A = Pc, Po, P
converges to an element of C1 N Cs.

Proof: Let N = %Pc2 Pe, — %I , apply KM iteration theorem with \ = % and observe that
1 1
Ny=(1-XNI+ AN = §I+ Pc, Po, — §I = Pc, Pc, .

0

Remark 1 1. In general, the method of alternating projections can converge arbitrarily slowly!

2. If Oy N Coy =0, then under certain conditions

k k :
~ P — f -
2% = Pey () = _inf [}z =l

and zF—Pg, (2F) converges to the gap vector v = z*—w*, where (z*,w*) € argmin,cc, wee, 12—
wl|

3. Was originally introduced by van-Neumann and Halperin in the 1950s.

Returning to the LP feasibility problem, i.e.: we let C'; be the solutions to

A 0 Of [z*
0 AT 1] |y*| = |c
' —=pT 0 |s* 0

and the set Cy = {(7,y,5) € R™2" | 2,5 > 0}. Then we consider the feasibility problem:

*

x
y* | € CiNC.
8*
x
Let’s apply the MAP algorithm. Must compute projections first. Let z = [y|.
z

e The projection onto Cs is a simple thresholding operation:
max{z,0}

Pe,(z) = Y
max{s,0}
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e Computing Pc, (z) requires a linear system solve. Let

A 0 0
D=0 AT 1
' —pT 0

then

Pg,(z) =z — Dt (Dz— m) ,

where DT is the Moore-Penrose inverse. When D has full rank,

Po,(2) = 2 — Dt (DDT)_1 (Dz - [IC’D .

e The matrix D' can be computed offline or one can solve the equation at each iteration. If
one intends to run the algorithm for a long time, it may be a good idea to precompute DT.

0

e Furthermore, it can be shown that, given 2 =

w < 8
(e ]

K= P, Poy (29),
the MAP sequence converges linearly.
Theorem 8 There exists 6 € (0,1) such that for all k € N
distc,ne, (25T < ddiste,ne, (25).
Hence, for all k € N disto,no, (2%) < §Fdiste,ne, (2°).

In general, § depends on the “angle” between C7 and C5. The more transversely they meet,
the better.
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