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Lecture 17
Lecturer: Damek Davis Scribe: Yingjie (Tom) Fei

Last time we showed

x∗ ∈ argmin
{
c>x : Ax = b, x ≥ 0

}
(y∗, s∗) ∈ argmax

{
b>y : A>y + s = c, s ≥ 0

}
if, and only, if

Ax∗ = b, A>y∗ + s∗ = c, c>x∗ − b>y∗ = 0, x∗ ≥ 0, s∗ ≥ 0,

i.e., A 0 0
0 A> 1
c> −b> 0


x
∗

y∗

s∗

 =

bc
0


︸ ︷︷ ︸

C1

and
[
x∗

s∗

]
≥ 0︸ ︷︷ ︸

C2

,

i.e., x
∗

y∗

s∗

 ∈ C1 ∩ C2.

• We showed that whenever C1∩C2 6= ∅ and z0 ∈ R2n+m, the sequence zk+1 = PC2PC1(zk)
converges to an element of C1 ∩ C2.

• This is called the method of alternating projections (MAP).

• There are many algorithms for solving feasibility problems.

• Today we learn the Douglas-Rachford splitting (DRS) method. Example:
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Figure 1:

• Unlike MAP, this method composes two reflections, not two projections.

• DRS was developed in the 1950s, first for solving PDEs.

• Later extended to feasibility problems and optimization problems.

• Sometimes it is called the Alternating Directions Method of Multipliers, or ADMM.

• In general DRS performs better than MAP, theoretically and practically.

• Cost of applying MAP and DRS is exactly the same.

By KM iteration theorem DRS converges.

Theorem. Let C1, C2 ⊂ Rn be two closed convex sets. Given z0 ∈ Rn the DRS sequence

(∀k ∈ N) zk+1 = 1
2(2PC2 − I) ◦ (2PC1 − I)(zk) + 1

2z
k

= zk − PC1(zk) + PC2(2PC1(zk)− zk)

converges to a fixed point of the operator (2PC2 − I) ◦ (2PC1 − I), whenever one exists.

Proof. Last lecture we showed that 2PC2 − I and 2PC1 − I are nonexpansive. Thus, because
it is the composition of nonexpansive mappings, the map N = (2PC2 − I) ◦ (2PC1 − I) is
nonexpansive. Thus, as the DRS sequence is generated by iterating the mapping N1/2, it
must converge by the KM convergence theorem–provided that Fix(N) 6= ∅. In that case, its
limit must be a fixed point of N .
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So the important question to answer is whether (2PC2 − I) ◦ (2PC1 − I) has a fixed point
and what properties it might satisfy. First, let’s rewrite the DRS algorithm with intermediate
variables.

xC1 = PC1z

xC2 = PC2(2xC1 − z)(= PC2 ◦ (2PC1 − I)(z))
z+ = z + (xC2 − xC1)

= z − PC1z + PC2(2PC1z − z).

In pictures,

Figure 2:

Theorem. Fix((2PC2 − I) ◦ (2PC1 − I)) = {x+ g : x ∈ C1 ∩ C2, g ∈ NC1(x) ∩ (−NC2(x))} .
Thus, if z is a fixed point, then PC1(z) ∈ C1 ∩ C2.

Proof. (⊂) Let z be a fixed point. Then

z = z+ = z + (xC2 − xC1).

So xC1 = xC2 . Let x := xC1 . Thus, z − x ∈ NC1(x) and x− z = (2x− z)− x ∈ NC2(x). Set
g = z − x. Then z = x+ g with g ∈ NC1(x) ∩ (−NC2(x)).
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(⊃) Consider z = x+ g where g ∈ NC1(x) ∩ (−NC2(x)). Then (x+ g)− x = g ∈ NC1(x)
so x = xC1 = PC1(x + g). Also, xC2 = PC2(2x − (x + g)) = PC2(x − g) and (x − g) − x =
−g ∈ NC2(x) so x = xC2 . Thus,

z+ = z + (xC2 − xC1) = z,

i.e., z = x+ g is a fixed point.

The above theorem shows that, Fix((2PC2 − I) ◦ (2PC1 − I)) is nonempty if and only
if C1 ∩ C2 6= ∅, since we can always choose g = 0. In addition, limit points of the DRS
algorithm recover elements PC1(x) ∈ C1 ∩ C2.

In general, we can show that:

Lemma. For all fixed points z∗ we have

(∀k ∈ N)
∥∥∥xk+1

C1 − x
k+1
C2

∥∥∥ ≤ ∥∥∥xk
C1 − x

k
C2

∥∥∥∥∥∥xk
C1 − x

k
C2

∥∥∥ = o

(
‖z0 − z∗‖√

k + 1

)

which shows that

dC2(xk
C1) ≤

∥∥∥xk
C1 − x

k
C2

∥∥∥ = o

(
‖z0 − z∗‖√

k + 1

)
,

dC1(xk
C2) ≤

∥∥∥xk
C1 − x

k
C2

∥∥∥ = o

(
‖z0 − z∗‖√

k + 1

)
.

We can even improve this rate:

Lemma. Let z∗ be a fixed point of the DRS operator. For all k ∈ N, let

x̄k
C1 = 1

k + 1

k∑
i=0

xi
C1

x̄k
C2 = 1

k + 1

k∑
i=0

xi
C2 .

Then x̄k
C1 ∈ C1, x̄

k
C2 ∈ C2 and

dC2(x̄k
C1) ≤

∥∥∥x̄k
C1 − x̄

k
C2

∥∥∥ = O

(
‖z0 − z∗‖
k + 1

)
,

dC1(x̄k
C2) ≤

∥∥∥x̄k
C1 − x̄

k
C2

∥∥∥ = O

(
‖z0 − z∗‖
k + 1

)
.
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Proof. Because zk+1 = N(zk) for a nonexpansive operator N , we have

(∀k ∈ N)
∥∥∥zk+1 − z∗

∥∥∥ =
∥∥∥N(zk)−N(z∗)

∥∥∥ ≤ ∥∥∥zk − z∗
∥∥∥ ≤ · · · ≤ ∥∥∥z0 − z∗

∥∥∥ .
Furthermore, because zk+1 = zk + (xk

C2 − x
k
C1) we have

∥∥∥x̄k
C1 − x̄

k
C2

∥∥∥ = 1
k + 1

∥∥∥∥∥
k∑

i=0
(xi

C1 − x
i
C2)
∥∥∥∥∥

= 1
k + 1

∥∥∥∥∥
k∑

i=0
(zi − zi+1)

∥∥∥∥∥
= 1
k + 1

∥∥∥z0 − zk+1
∥∥∥

≤ 1
k + 1

(∥∥∥z0 − z∗
∥∥∥ +

∥∥∥z∗ − zk+1
∥∥∥)

=2 ‖z0 − z∗‖
k + 1 .

The distance inequalities follow because x̄k
C1 ∈ C1, x̄

k
C2 ∈ C2.

In general, the DRS method can converge arbitrarily slowly.

Theorem ([1]). For any h : R+ 7→ (0, 1) that is strictly decreasing to zero, there exist closed
convex sets such that C1 ∩ C2 = {0} and

∥∥∥zk − z∗
∥∥∥ ≥ h(k)/e.

However, for linear programs formulated as they are at the start of the lecture, the story
is different.

Theorem. For the linear programming feasibility problem, the Douglas-Rachford algorithm
satisfies

(∀k ∈ N) dC1∩C2(zk+1) ≤ δdC1∩C2(zk)

for some δ ∈ (0, 1).
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