ORIE 6300 Mathematical Programming I November 3, 2016

Lecture 20

Lecturer: Damek Davis Scribe: Pamela Badian-Pessot

1 Recap

e We can view the simplex method as a nonsmooth equation solver.

2 Primal-dual Interior Point Method (IPM)

Reference Today’s lecture is based on Jim Renegar’s excellent textbook [?].
History:

e 1984 Karmarkar developed new polynomial time algorithm for linear programming

e First polynomial time algorithm called Ellipsoid method, developed in 1972. Proved to have
polynomial complexity by Khachiyan in 1979.

e Ellipsoid method is very slow in practice. Much slower than simplex.
e Throughout the 1980s-1990s IPMs actively researched.
e We will study a simple primal-dual IPMs that often performs well in practice.
Idea:
e Given primal dual pair
min{c’ z|Az = b, 2 > 0}, max{bly|ATy + s =¢, s >0}

form primal dual system

[AOO

X i i
Ci=1 |y 0 AT I} vl ¢ Co=1 |y
S S S

together with the complementary slackness condition

2l(c—ATy) = —bTy =0.

e Then realize that z7s = 27 (c — ATy).
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e IPMs solve a series of relaxed problems

xr
(P,) = yl eCinCy, x0©s=v, v>0
S

depending on vectors v € RZ which tend to zero. Where C35 = int(Cs) and 2 ©s := (x;s)7,

i.e., the componentwise product.
e In the limit, we get a solution.
Three Questions
1. When is there a solution to P,?

2. How do we choose initial v and solve P,?

3. Given v and a solution to P,, how should we choose vy (the next v)? and can we easily

update the solution of P, to a solution of P, 7

2.1 Question 1

The answer to question 1 is always.

Define:
T
C =< (x,8)|Fy with |y| € C1NCS
s
Theorem 1 The mapping
F:C— RY,

(r,8) —»xOs
s a bijection.
The proof of this theorem relies on basic techniques in convex optimization, so we omit it.
Why does a solution always exist?

Given v, set (z,8) = F~1(v).

2.2 Question 2

e We choose
v = e

where e = (1,...,1) and g > 0. Then by the theorem, Jz(u), s(p),
z(p) © s(p) = pe.

Definition 1 (Central Path) We call {(z(u),s(n)) | ¢ > 0} the central path.
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e It is typical to initialize IPMs on the central path.
e Why do this?

— To get best computational complexity.
— To only have one algorithm parameter pu.

— To keep variables “balanced:” we want all variables to violate optimality conditions by
the same amount.

e How do we find initial (x(u), s(u))?

In practice, we can’t find the points exactly, but we can assume we satisfy

||z © s — uel|| < const - p.

e This is typically achieved by inexactly solving another related optimization problem, which
we won't dwell on here.

e This is similar to how simplex method requires solving an auxiliary LP to get an initial BF'S.

Question 3

e Suppose have a solution to P, such that [|[v — pe|| < constpu.

e We want to easily find a point vy so that
o4 — pgell < constpy

where pg < p.

and a solution to P, .

e Let v/ = uje. Given a solution to P,, called [z, v, s], the best case is that we solve
V=205, d=x+Az, S=s+As, yY=y+Ay
2, >0, AAz =0, ATAy+ As=0.

e The last two conditions guarantee that Az’ =b, ATy +s' = c.
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e The first equation can be expanded
V=@+A)O(s+As)=20s+120As+Ar O s+ Axr©® As.

Ie.
V—v=2x0As+ Az ® s+ Az ® As.

e Clearly 2/,1/, s’ solves P, but this is too hard in general because of the quadratic coupling
Az ® As.

e However, we CAN solve the first order approximation

TOAs+Ares=v—v
AAx =0
ATAy+ As =0

Then we set:
x4y =x+Az; sy =s+As; yr=y+ Ay.

And let vy =24 © s4.
e Observation: v — vy = Az © As.

e Is (z4,y4,sy) feasible? To answer this we need a function and a theorem.
Definition 2 Define a function r : R™ — R by
(Vv € R™) r(v) = min{vy, ..., v, }.
Theorem 2 Ifv' € B(v,r(v)), then (z4+,y+,s4) is feasible and

o I =vl?
vy — V|| < ——m
H + H = 27‘(1))
Before we prove the theorem we indicate its use in algorithmic analysis.

Corollary 3 Ifv' € B(v,tr(v)) wheret < 1, then (z4,y+,s+) is feasible and

12
vy €B <’U', 21 tr(v')) .

In particular, if

(a) [Jv— pel| < i and

() me = (1- 57 ) w

then [[og. — pyell < gy
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Proof: By the theorem
I, — ol _ £r(v)

/
— <
H'U+ v H — 27.(/[)) — 2

On the other hand,
r(W) Zr() = v =2 = (1 -t)r()

r(v')
1-t

by 1-Lipschitz continuity of . So we can substitute r(v) < above.

Exercise: Assume (a) and (b) and derive the bound ||v; — pyell. O

e Thus if v is near the central path, then vy is also near the central path! Therefore iterating
and finding v, makes sense.

e After k iterations, we have

k
I | < : < 1 1 1 < < 1 1 1
Uk T HECILS Sk = 5y gy/n ) 1= =0y syn) Mo
e Moreover,

de—bly=als= Zvj
= [lvllx
2 [|pellr = llv — pely
> np —/nllv — pell

(st

and similarly

1
T T

—-b < 1 .
c T4 y+_n(+24\/ﬁ>u+

Exercise: Show
ey — bV + 1
e —bTy — 24/n’

Thus, the primal-dual gap is halved once ever O(y/n) iterations.

We will prove theorem 2 next time.

Why is each iteration of this IPM more expensive than DRS and MAP?
Because the linear system changes at every iteration of this method, while each iteration of
DRS/MAP limited to matrix-vector multiplications if we precompute DT,

Paper of possible interest [?]
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