ORIE 6300 Mathematical Programming I November 22, 2016

Lecture 25

Lecturer: Damek Davis Scribe: Johan Bjorck

Throughout the lecture we assume that all functions are closed, convex, and proper. We first show a
result about the subgradients of a sum of functions

Proposition 1 Let f : R" — R and g : R® — R be functions, where f is differentiable at x € dom(g). Then
(f +9)(x) =V f(z) + 9g(x).

Proof: = We first show “C”. Let v € 9(f + g)(x) then we have

vy € R"
= g()

g(y) > f(@) +g(x) + (v,y — @)
(f(z) = f(y) + (v,y —x)

+
glz) + x—y>—0(y—w)+<v>y—$>>
g(z) —oly —z) + (v—=Vf(z),y —z)

If dom(g) = {x} then g(y) = oo for y # x, which would give ¢g(y) > g(x) + (v — Vf(x),y — z). If on the
other hand y € dom(g) and y # x, then Ve > 0 we define y. = ey + (1 — €)z € dom(g). Thus

& +

y)
g(

H v ,\

a(ve) < ea(y) + (1 Dg(x) = g(v) > ~g(ue) — —g(x)

€ €
Hence we have

Thus v — Vf(z) € dg(x).
Let us now prove the other inclusion “2”. Let v € dg(x), then

(Vy eR"™)  fly) > f(z) +(Vf(z),y — )
> g(x) + (v,y — )

Thus we clearly see that (f+¢)(y) > (f+g)(x) + v+ Vf(x),y —x), and then Vf(z) +v € (g + f)(z).

O

With the basics of convex calculus we can now start developing algorithms. On Homework 10, we

developed the projected subgradient method. In practice, such subgradient methods are much slower than

smooth gradient methods. Thus, we now develop a general way to smooth convex functions, in order to
apply fast methods from smooth optimization.
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Definition 1 Let g : R® — R be a function, for every v > 0 we define the Moreau envelope as

1
e~rg(x) = inf + — ||z —y|?
(o) =it { o) + 5o =12
The moreau envelope trades off minimization and proximity through the parameter v. We now show the
uniqueness of the point obtain through the moreau envelope

Proposition 2 Let v € R", then there exists a unique point prox, , such that

. 1 2
prox,,, += axgmin, { 9(s) + -~y |

Proof:  Because g is convex Ja € R™ b € R s.t. Vy € R™ we have g(y) > {(a,y) + b (Exercise!). Thus

. 1 1
(Vg eR™)  g(y) + gllx —ylI> > (a,y) + b+ gllw —y|I> > consty,ap

Thus e, > —o0, note also that e, < 0o as g # 0o so Jzg € R" such that co > g(zg) + ||z — zo |/ (27) >

€v.f- _ _ _ _
For existence, 3{z"};cn such that g(z*) + %Hx’ — || = e,(x). We now claim that {2'},cy is bounded,

let us quickly prove this claim.
We have

. 1 ) . 1 .
9(a) + 5ol =2l 2 {a,a') + b+ o-fla’ — ol
. 1 )
= {(a,z) + b+ {(a,z" —z) + %Hm —2*|?
1 )
= (o) + b 5lle’ =2+l = ol

Thus, ||z" — 2 + val|* < max;jen{g(z?) + %Hz] —z|*} — (a,z) + b+ %||a||* < oo, which is finite because
{g(27) + %Hx] — z||?},en is a convergent sequence. Thus {z'} is bounded and we have proved our claim.
Now, WLOG, assume that 2 — y € R", then by lower semicontinuity of g + %H - —z||? we have

eyg(x) = lim [g(xi) +

1—>00 2’)/

L 2 ( . i 1
gt — >al1 z) -
ot = al] 2 g (Jim ') + 57

Thus e,y = g(y) + %Hm —y||*. To show the uniqueness, note that if g(y) + 55 [z — y[|* = e,4(z) then

. 2 1
lim 2 — H - Nz =yl
im z* —x g(y) + QVHHC yl|

i—00

1 1
0€5g(y)+;(y*x) == ;(zfy)eﬁg(y)-
Thus Vz € R™ we have
1
g<z>zg<y)+<7<x—y>7z—y>
N
=500+ 5 (o= ulP + ly =l = o =<1

1 1
— 4(:)+ gl ol 2 9) + 5 (e = olP + 1= P,
So g(z) + %Hz — z||? = e44(x) is equivalent to z = y, which proves uniqueness. O

Note that we in the proof we showed that e,  is finite and always sits beneath g(x). As a corollary of
the above results we learn that
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Corollary 3 Fix (prox.,) = argmin(g)
Proof:

1 1
prox, ,(r) =z <= x = argmin {g(y) + %Hx - y||2} < 0€dg(z)+ ;(x —z) = 9g(x).

As an example take C' to be a closed convex set, then we have

1 1 1
1 (@) = argmin, {Lc<y> + - x|2} — argmin ¢ {hny - x||2} — 5 distt (o)

The unique y such that e, (z) = argminyecéﬂy — || is just prox,, (z) = Po(x).
We have previously used the firm-non-expansiveness to develop efficient algorithms, and it turns out that

prox., is also firmly nonexpansive. To show firm nonexpansiveness, we first need the following result

Lemma 4 (Subgradient Monotonicity) Let x,y € dom(g) and take u € dg(x), v € Ig(y), then the
following holds

(x —y,u—v) >0

Proof: We have

9(y) 2 9(z) + {z =y, u)
9(x) = 9(y) + (y — z,v)
Adding these two together yields the result . O

Theorem 5 The mapping prox.,, is firmly nonexpansive.

Proof: Let =,y € R™, the we have

. 1
pros, (o) = arguin, {9(:) + 5o~ 217}

1 - 1
so 0 € dg(prox,,(x)) + 3 (prox,,(x) — x), equivalently = (x —prox,,(z)) € dg(prox,4(x)). The same holds
for y, and thus

0< <i(x — prox, () — %(y — Prox,(y)), prox, o (z) — proxyg(y)>

1
= §<Z‘ - Y- (prox’y,g(x) - prox'y,g(y))v prOX'y,g(x) - prOX'y,g(y)>

1
- ( @ = prox, (&) — (y — prox, ,()I? — Iprox,,, (&) — prox, ,w)|1? + 1z - sz)

Thus we have

Iprox. 4(x) — prox, ,(y)[I* + [[(z — prox, ,(«)) — (y — prox, ,(¥)|I* < llz — y|*.
O

Corollary 6 Assume argmin{g(z)} # (), then the sequence {z;}ien converges to a minimizer of g where
xo € R™ is arbitrary and

Tpi1 = prox, ,(zx).

For proving this we simply apply the KM iteration to 2prox, , — I.
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